# File Organization and Indexing

#### **File Organization**

CPSC 343: Database Theory and Practice • Fall 2024

Basic logical unit of data storage is the record.

i.e. one row of a table

All records in a file are typically of the same type. – i.e. one file per table

Basic unit of data transfer between disk and memory is the *block*.

- block size is a physical property of the disk
- record size R = number of bytes per record
- block size B = number of bytes per disk block
- blocking factor *bfr* = number of records per disk block

#### **DBMS** Internals

#### Two topics:

- file organization and indexing
- query processing and optimization

Our motivation is twofold -

- understanding these topics provides a deeper understanding of database performance and tuning options
  - what indexes are available
  - how you write the query
  - providing hints to the optimizer
  - whether the optimizer is using the most current info
- it's interesting to know what is happening behind the scenes

CPSC 343: Database Theory and Practice • Fall 2024

#### **File Organization** records can be fixed- or variable-length variable-length stems from variable-length fields such as VARCHAR Fixed-length records are: (choose all the apply) simpler than variable-length 75 % 3 respondents records more space fixed-length fields are more efficient than space-efficient that variable-1 respondent 25 % variable-length length fields if all of the data values are the same length records only possible when whether all records are the the record size is same length is independent 50 <sup>9</sup> 2 respondente smaller than the of how they fit into blocks on block size the disk not possible with a 0 % spanned organization 0 % none of the above CPSC 34

# File Organization

• files can have a *spanned* or *unspanned* organization spanned allows records to be split between blocks



5

| Example                                                                                |        |              |                 |                           | $ \begin{array}{l} R = record size \\ B = block size \\ bfr = blocking factor \end{array} $ |                                                               |  |
|----------------------------------------------------------------------------------------|--------|--------------|-----------------|---------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| table                                                                                  | field  | type         | size<br>(bytes) | record<br>size<br>(bytes) | average<br>record<br>size<br>(bytes)                                                        | average<br>blocking<br>factor (*)<br>unspanned<br>bfr = [B/R] |  |
|                                                                                        | sid    | SMALLINT     | 2               | 6 - 51                    | 28                                                                                          | 1024/28,<br>round down<br>= 36                                |  |
|                                                                                        | sname  | VARCHAR(45)  | 1 - 46          |                           |                                                                                             |                                                               |  |
| SALON                                                                                  | rating | TINYINT      | 1               |                           |                                                                                             |                                                               |  |
|                                                                                        | age    | DECIMAL(3,1) | 2               |                           |                                                                                             |                                                               |  |
|                                                                                        | bid    | SMALLINT     | 2               |                           | 49                                                                                          | 1024/49,<br>round down<br>= 20                                |  |
| DOAT                                                                                   | bname  | VARCHAR(45)  | 1 - 46          | 4 04                      |                                                                                             |                                                               |  |
| BOAT                                                                                   | color  | VARCHAR(45)  | 1-46            | 4 – 94                    |                                                                                             |                                                               |  |
| RESERVATION                                                                            | sid    | SMALLINT     | 2               |                           | 7                                                                                           | 1024/7,<br>round down<br>= 146                                |  |
|                                                                                        | bid    | SMALLINT     | 2               | 7                         |                                                                                             |                                                               |  |
|                                                                                        | day    | DATE         | 3               |                           |                                                                                             |                                                               |  |
| CPSC 343: Database Theory and Practice + Fall 2024 (*) with block size of 1024 bytes 7 |        |              |                 |                           |                                                                                             |                                                               |  |

| Example                                                                               |        |              |                 | R = record size<br>B = block size<br>bfr = blocking factor |         |                                      |                                                               |
|---------------------------------------------------------------------------------------|--------|--------------|-----------------|------------------------------------------------------------|---------|--------------------------------------|---------------------------------------------------------------|
| table                                                                                 | field  | type         | size<br>(bytes) | R<br>recor<br>size<br>(bytes                               | d<br>s) | average<br>record<br>size<br>(bytes) | average<br>blocking<br>factor (*)<br>unspanned<br>bfr = [B/R] |
|                                                                                       | sid    | SMALLINT     | 2               |                                                            |         |                                      |                                                               |
| SALL OD                                                                               | sname  | VARCHAR(45)  | 1 - 46          |                                                            |         |                                      |                                                               |
| SAILOR                                                                                | rating | TINYINT      | 1               |                                                            |         |                                      |                                                               |
|                                                                                       | age    | DECIMAL(3,1) | 2               |                                                            |         |                                      |                                                               |
|                                                                                       | bid    | SMALLINT     | 2               |                                                            |         |                                      |                                                               |
| POAT                                                                                  | bname  | VARCHAR(45)  | 1 - 46          |                                                            |         |                                      |                                                               |
| BOAT                                                                                  | color  | VARCHAR(45)  | 1-46            |                                                            |         |                                      |                                                               |
|                                                                                       | sid    | SMALLINT     | 2               |                                                            |         |                                      |                                                               |
| RESERVATION                                                                           | bid    | SMALLINT     | 2               |                                                            |         |                                      |                                                               |
|                                                                                       | day    | DATE         | 3               |                                                            |         |                                      |                                                               |
| CPSC 343: Database Theory and Practice • Fal 2024 (*) with block size of 1024 bytes 6 |        |              |                 |                                                            |         |                                      |                                                               |

| File Operations                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| for traditional HDDs –<br>• seek is the time to<br>position the read/write<br>head for the correct track<br>• latency is the time for the<br>disk to spin the correct<br>block under the head<br>• block transfer time is the<br>time to actually transfer<br>the block from disk to<br>memory<br>• reading consecutive<br>blocks is much faster than | When considering the time it takes to carry out a database<br>operation (such as SELECT, INSERT, DELETE, or UPDATE), we<br>focus on the number of disk blocks read rather than the actual<br>elapsed time because: (choose all that apply)<br>it takes the same amount of<br>time to access any block, so<br>it amounts to the same<br>thing<br>the seek and latency times<br>are a physical property of<br>the disk - constant for ome 3 respondents<br>system but different from |
| non-consecutive blocks<br>compared to HDDs, for solid<br>state drives (SSDs) –<br>•seek time is eliminated<br>•latency is greatly reduced<br>•there is little difference<br>between reading<br>consecutive and non-<br>consecutive blocks                                                                                                             | one system to the next<br>while reading consecutive<br>blocks may be faster than<br>reading non-consecutive<br>blocks, how the blocks are 4 respondents<br>arranged on disk is<br>controlled by the operating<br>system                                                                                                                                                                                                                                                            |

### **File Operations**

CPSC 343: Database Theory and Practice • Fall 2024

Searching is the most important operation.

- common to have more data retrieval queries than insert/update/delete
- update/delete requires first locating the record(s) involved
- insert often involves some kind of search
  - e.g. to locate insertion point
  - e.g. to verify that key constraints are satisfied

| Physical File Organization | b = # blocks<br>bfr = blocking factor |
|----------------------------|---------------------------------------|
|                            | s = # records matched                 |

Unordered file – records are placed in the file in the order they are inserted.

| operation                                                                     | how done?                                | blocks<br>accessed        |  |  |
|-------------------------------------------------------------------------------|------------------------------------------|---------------------------|--|--|
| searching (single match)                                                      | linear search (stop when found)          | max b<br>average b/2      |  |  |
| range<br>searching<br>(or multiple<br>matches)                                | linear search                            | b                         |  |  |
| insert<br>(one record)                                                        | read last block, add record, write block | 2                         |  |  |
| delete                                                                        | search + write deletion marker           | search + s                |  |  |
| update fixed length: search, then change variable length: delete, then insert |                                          | search + s<br>search + 3s |  |  |
| CPSC 343: Database Theory and Practice • Fail 2024 12                         |                                          |                           |  |  |

#### Searching

#### Types of searches.

- equality comparison (=)
  - at most one match for primary key and unique columns
  - may be multiple matches otherwise

| True/false: an equa | lity search means tha | at there w | vill be at most |
|---------------------|-----------------------|------------|-----------------|
| one matching reco   | rd.                   |            |                 |
|                     |                       |            |                 |
| True                | 1 respondent          | 25 %       |                 |
| False               | 3 respondents         | 75 %       | ~               |

- range comparison (<, >)
- complex conditions
  - equality or range conditions combined with AND, OR

CPSC 343: Database Theory and Practice • Fall 2024

*Sorted file* – records are ordered based on the value of one or more attributes.

| operation                                        | how done?                                                                                                                                                                   | blocks accessed                                         |  |  |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| searching on<br>ordering field<br>(single match) | binary search                                                                                                                                                               | ceil(log <sub>2</sub> (b))                              |  |  |  |  |
| range searching on ordering field                | binary search to locate one end of range + scan                                                                                                                             | ceil(log <sub>2</sub> (b)) +<br>ceil(s/bfr)             |  |  |  |  |
| searching /<br>range searching<br>on other field | linear search                                                                                                                                                               | max b<br>average b/2 (equality<br>search, single match) |  |  |  |  |
| insert<br>(one record)                           | search + read block, add record, write<br>block<br>(shifting can be mitigated by leaving empty spaces and<br>periodically redistributing space, at the cost of more blocks) | search + 1                                              |  |  |  |  |
| delete                                           | search + write deletion marker                                                                                                                                              | search + ceil(s/bfr)                                    |  |  |  |  |
| update<br>(one record)                           | fixed length: search, then change variable length: delete, then insert                                                                                                      | search + 1<br>2*search + 2                              |  |  |  |  |

# Physical File Organization

b = # blocks bfr = blocking factor s = # records matched

Hash file – apply hash function to hash field to find address of disk block containing the record.

 consecutive key values generally don't hash to consecutive locations

| operation                                                                   | how done?                                                                                                                                                                                  | blocks<br>accessed                                         |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| searching on hash<br>field (single match) hash field value, read that block |                                                                                                                                                                                            | 1                                                          |
| range searching<br>on hash field                                            | small number of values in range: for each value in the range, hash and read that block                                                                                                     | # values checked                                           |
|                                                                             | large number of values in range: linear search of the file                                                                                                                                 | b                                                          |
| searching / range<br>searching on other<br>field                            | linear search                                                                                                                                                                              | max b<br>average b/2<br>(equality search,<br>single match) |
| insert / delete /<br>update (fixed length,<br>one record)                   | search time + read, modify, write block<br>(if modifying hash field, delete + insert)<br>(shifting can be mitigated with deletion markers and empty<br>spaces, at the cost of more blocks) | search + 1<br>(2*search + 2)                               |

| Searching | r = # records<br>d = # distinct values |
|-----------|----------------------------------------|
|           | s = # records matched                  |

Determining the expected number of matches s –

- equality comparison (=), primary key and unique columns – at most one match
- otherwise assume equal distribution of records unless there is additional information
  - equality comparison (=) what's the expected number of records per value?
    - if there are *d* unique values *r/d*

CPSC 343: Database Theory and Practice • Fall 2024

- range comparison (<, >) – what fraction of the range matches the condition, and how many records is that?

| Physical File Organization            |                 |                      |                                                   | b = #<br>bfr = k<br>s = # | blocks<br>blocking factor<br>records matched             |  |
|---------------------------------------|-----------------|----------------------|---------------------------------------------------|---------------------------|----------------------------------------------------------|--|
| 000                                   | ration          | blocks accessed      |                                                   |                           |                                                          |  |
| operation                             |                 | unordered            | sorted                                            |                           | hash file                                                |  |
| search<br>(single match)              |                 | max b<br>average b/2 | ceil(log <sub>2</sub> (b))<br>(on ordering field) |                           | 1<br>(on hash field)                                     |  |
| range search<br>(or multiple matches) |                 | b                    | ceil(log <sub>2</sub> (b)) +<br>ceil(s/bfr)       |                           | <pre># values checked (few values) b (many values)</pre> |  |
| insert (one record)                   |                 | 2                    | search + 1                                        |                           | search + 1<br>2*search + 2                               |  |
| delete (one record)                   |                 | search + 1           | search + 1                                        |                           |                                                          |  |
| update                                | fixed length    | search + 1           | search                                            | + 1                       | (if modifying hash                                       |  |
| (one record)                          | variable length | search + 3           | 2*search                                          | ı + 2                     | neiu)                                                    |  |

There's a big difference in search time, which underlies everything.

- hash file is best for equality search, but worst or close to worst for range search
- ordered file is good for searching (equality and range)

...but a file can only be ordered/hashed on one field (or group of fields)

.7