

File Organization and Indexing

CPSC 343: Database Theory and Practice • Fall 2024 2

DBMS Internals

Two topics:
• file organization and indexing
• query processing and optimization

Our motivation is twofold –
• understanding these topics provides a deeper

understanding of database performance and tuning
options
– what indexes are available
– how you write the query
– providing hints to the optimizer
– whether the optimizer is using the most current info

• it’s interesting to know what is happening behind the
scenes

CPSC 343: Database Theory and Practice • Fall 2024 3

File Organization

Basic logical unit of data storage is the record.
– i.e. one row of a table

All records in a file are typically of the same type.
– i.e. one file per table

Basic unit of data transfer between disk and memory is the
block.

– block size is a physical property of the disk

• record size R = number of bytes per record
• block size B = number of bytes per disk block
• blocking factor bfr = number of records per disk block

CPSC 343: Database Theory and Practice • Fall 2024 4

File Organization

• records can be fixed- or variable-length
– variable-length stems from variable-length fields such as

VARCHAR

fixed-length fields are more
space-efficient that variable-
length fields if all of the data
values are the same length

whether all records are the
same length is independent
of how they fit into blocks on
the disk

CPSC 343: Database Theory and Practice • Fall 2024 5

File Organization

• files can have a spanned or unspanned organization
– spanned allows records to be split between blocks

how records fit into blocks on
the disk is independent of
whether or not they are all
the same length

CPSC 343: Database Theory and Practice • Fall 2024 6

Example

table field type size
(bytes)

R
record

size
(bytes)

average
record

size
(bytes)

average
blocking
factor (*)

unspanned
bfr = ⌊B/R⌋

SAILOR

sid SMALLINT 2

sname VARCHAR(45) 1 – 46

rating TINYINT 1

age DECIMAL(3,1) 2

BOAT

bid SMALLINT 2

bname VARCHAR(45) 1 – 46

color VARCHAR(45) 1 – 46

RESERVATION

sid SMALLINT 2

bid SMALLINT 2

day DATE 3

(*) with block size of 1024 bytes

R = record size
B = block size
bfr = blocking factor

CPSC 343: Database Theory and Practice • Fall 2024 7

Example

table field type size
(bytes)

record
size

(bytes)

average
record

size
(bytes)

average
blocking
factor (*)

unspanned
bfr = ⌊B/R⌋

SAILOR

sid SMALLINT 2

6 – 51 28
1024/28,

round down
= 36

sname VARCHAR(45) 1 – 46

rating TINYINT 1

age DECIMAL(3,1) 2

BOAT

bid SMALLINT 2

4 – 94 49
1024/49,

round down
= 20

bname VARCHAR(45) 1 – 46

color VARCHAR(45) 1 – 46

RESERVATION

sid SMALLINT 2

7 7
1024/7,

round down
= 146

bid SMALLINT 2

day DATE 3

(*) with block size of 1024 bytes

R = record size
B = block size
bfr = blocking factor

CPSC 343: Database Theory and Practice • Fall 2024 8

File Operations

compared to HDDs, for solid
state drives (SSDs) –
•seek time is eliminated
•latency is greatly reduced
•there is little difference
between reading
consecutive and non-
consecutive blocks

for traditional HDDs –
•seek is the time to
position the read/write
head for the correct track
•latency is the time for the
disk to spin the correct
block under the head
•block transfer time is the
time to actually transfer
the block from disk to
memory
•reading consecutive
blocks is much faster than
non-consecutive blocks

CPSC 343: Database Theory and Practice • Fall 2024 9

File Operations

Searching is the most important operation.

• common to have more data retrieval queries than
insert/update/delete

• update/delete requires first locating the record(s) involved

• insert often involves some kind of search
– e.g. to locate insertion point
– e.g. to verify that key constraints are satisfied

CPSC 343: Database Theory and Practice • Fall 2024 10

Searching

Types of searches.

• equality comparison (=)
– at most one match for primary key and unique columns
– may be multiple matches otherwise

–

• range comparison (<, >)

• complex conditions
– equality or range conditions combined with AND, OR

CPSC 343: Database Theory and Practice • Fall 2024 12

Physical File Organization

Unordered file – records are placed in the file in the order
they are inserted.

operation how done?
blocks

accessed

searching
(single match)

linear search (stop when found) max b
average b/2

range
searching
(or multiple
matches)

linear search b

insert
(one record)

read last block, add record, write block 2

delete search + write deletion marker search + s

update
fixed length: search, then change
variable length: delete, then insert

search + s
search + 3s

b = # blocks
bfr = blocking factor
s = # records matched

CPSC 343: Database Theory and Practice • Fall 2024 14

Physical File Organization

Sorted file – records are ordered based on the value of one
or more attributes.

operation how done? blocks accessed

searching on
ordering field
(single match)

binary search ceil(log
2
(b))

range searching
on ordering field

binary search to locate one end of
range + scan

ceil(log
2
(b)) +

ceil(s/bfr)

searching /
range searching
 on other field

linear search
max b
average b/2 (equality
search, single match)

insert
(one record)

search + read block, add record, write
block
(shifting can be mitigated by leaving empty spaces and
periodically redistributing space, at the cost of more blocks)

search + 1

delete search + write deletion marker search + ceil(s/bfr)

update
(one record)

fixed length: search, then change
variable length: delete, then insert

search + 1
2*search + 2

b = # blocks
bfr = blocking factor
s = # records matched

CPSC 343: Database Theory and Practice • Fall 2024 16

Physical File Organization

Hash file – apply hash function to hash field to find address
of disk block containing the record.

– consecutive key values generally don't hash to consecutive
locations

operation how done? blocks
accessed

searching on hash
field (single match)

hash field value, read that block 1

range searching
on hash field

small number of values in range: for each
value in the range, hash and read that block

values
checked

large number of values in range: linear
search of the file b

searching / range
searching on other
field

linear search

max b
average b/2

(equality search,
single match)

insert / delete /
update (fixed length,
one record)

search time + read, modify, write block
(if modifying hash field, delete + insert)
(shifting can be mitigated with deletion markers and empty
spaces, at the cost of more blocks)

search + 1
(2*search + 2)

b = # blocks
bfr = blocking factor
s = # records matched

CPSC 343: Database Theory and Practice • Fall 2024 17

Physical File Organization

operation
blocks accessed

unordered sorted hash file

search
(single match)

max b
average b/2

ceil(log
2
(b))

(on ordering field)
1

(on hash field)

range search
(or multiple matches)

b
ceil(log

2
(b)) +

ceil(s/bfr)

values checked
(few values)

b (many values)

insert (one record) 2 search + 1
search + 1

2*search + 2
(if modifying hash

field)

delete (one record) search + 1 search + 1

update
(one record)

fixed length search + 1 search + 1

variable length search + 3 2*search + 2

b = # blocks
bfr = blocking factor
s = # records matched

There's a big difference in search time, which underlies everything.
• hash file is best for equality search, but worst or close to worst for range

search

• ordered file is good for searching (equality and range)

...but a file can only be ordered/hashed on one field (or group of fields)

CPSC 343: Database Theory and Practice • Fall 2024 18

Searching

Determining the expected number of matches s –

• equality comparison (=), primary key and unique columns
– at most one match

• otherwise assume equal distribution of records unless
there is additional information
– equality comparison (=) – what’s the expected number of

records per value?
• if there are d unique values – r/d

– range comparison (<, >) – what fraction of the range matches
the condition, and how many records is that?

r = # records
d = # distinct values
s = # records matched

