

CPSC 343: Database Theory and Practice • Fall 2024 38

Heuristic Query Optimization Summary

1.Break up conjunctive SELECT conditions (ANDs) into a
series of individual SELECTs.

2.Move each SELECT as far down as possible.

3.Combine CROSS PRODUCT and SELECT into JOIN.

4.Reorder consecutive SELECTs so the most selective are
done first.

5.Reorder JOINs so the most restrictive operations are
done first. (without introducing CROSS PRODUCTs)

6.Break up PROJECTs and move them as far down as
possible.

7.Address opportunities for pipelining.

CPSC 343: Database Theory and Practice • Fall 2024 39

Initial Query Tree

CPSC 343: Database Theory and Practice • Fall 2024 40

Algorithm

1. Break up conjunctive SELECT conditions into a series of
individual SELECT operations.

2. Move each SELECT as far down as possible.
● SELECT is commutative (order of SELECTs doesn't matter)
● SELECT can be moved below PROJECT
● SELECT can be moved below JOIN and CROSS PRODUCT if

the selection condition involves only attributes in one of the
relations being joined

● SELECT can be moved below UNION, INTERSECTION, and
DIFFERENCE

CPSC 343: Database Theory and Practice • Fall 2024 41

Move SELECTs Down

EMPLOYEE(Fname,Minit,Lname,Ssn,Bdate,Address,
 Sex,Salary,Super_ssn,Dno)
PROJECT(Pname,Pnumber,Plocation,Dnum)
WORKS_ON(Essn,Pno,Hours)

CPSC 343: Database Theory and Practice • Fall 2024 42

Algorithm

3. Combine CROSS PRODUCT and SELECT into JOIN.
● requires SELECT condition to be a conjunction of equality

comparisons

CPSC 343: Database Theory and Practice • Fall 2024 43

Transform CROSS PRODUCT Into JOIN

EMPLOYEE(Fname,Minit,Lname,Ssn,Bdate,Address,Sex,
 Salary,Super_ssn,Dno)
PROJECT(Pname,Pnumber,Plocation,Dnum)
WORKS_ON(Essn,Pno,Hours)

CPSC 343: Database Theory and Practice • Fall 2024 44

Algorithm

4. Reorder consecutive SELECTs so that the most selective
are done first.
● SELECT is commutative (order of SELECTs doesn't matter)
● most selective can be based on the number of result tuples or

the selectivity or rule of thumb (equality more selective than
range)

Selectivity is the ratio of rows resulting from the SELECT to
initial rows: |σc(R)|/|R|

• can be estimated from DB catalog info
– use number of distinct values to estimate for equality conditions
– use range of values to estimate for range conditions

CPSC 343: Database Theory and Practice • Fall 2024 45

Database Catalog Info

table column # distinct
values (d)

low value high
value

PROJECT

Pnumber 11 1 92

Pname 11

Plocation 9

Dnum 5 1 8

WORKS_ON
Pno 11 1 92

Essn 38

EMPLOYEE

Ssn 40

Bdate 40 1927-11-10 1980-05-21

Lname 37

Sex 2

table # records
(r)

PROJECT 11

WORKS_ON 48

EMPLOYEE 40

CPSC 343: Database Theory and Practice • Fall 2024 46

Reorder SELECTs

σBdate>'1957-12-31'(EMPLOYEE)
• date span is approx. 53 years, with 22 years covered by the range assuming uniform →

distribution, selectivity is approx. 22/53 = 0.41
• number of result tuples = 0.41*40 = 16

σSex='F'(EMPLOYEE)
• 2 distinct values assuming uniform distribution, selectivity is 1/2 = 0.5→
• number of result tuples = 0.5*40 = 20 CPSC 343: Database Theory and Practice • Fall 2024 47

Algorithm

5. Reorder JOINs so that the most restrictive operations are
first (low and left), as long as CROSS PRODUCT
operations aren't introduced.
● most restrictive can be based on the number of result tuples or

the join selectivity
● heuristic: fewer input tuples leads to fewer result tuples

– JOIN, CROSS PRODUCT are commutative
– JOIN, CROSS PRODUCT are associative but there are

complications (CROSS PRODUCTs introduced, shifting JOIN
conditions) if the join conditions are not limited to consecutive
relations

Join selectivity is the fraction of rows actually resulting from
a JOIN: |R ⋈

c
 S|/(|R| |S|)

• can be estimated from DB catalog info
– for join condition R.a = S.b, js = min(1/d

a
,1/d

b
) where d

a
 and d

b

are the number of distinct values for R.a and S.b, respectively
• d = r (number of records) for keys

CPSC 343: Database Theory and Practice • Fall 2024 48

Database Catalog Info

table column # distinct
values (d)

low value high
value

PROJECT

Pnumber 11 1 92

Pname 11

Plocation 9

Dnum 5 1 8

WORKS_ON
Pno 11 1 92

Essn 38

EMPLOYEE

Ssn 40

Bdate 40 1927-11-10 1980-05-21

Lname 37

Sex 2

table # records
(r)

PROJECT 11

WORKS_ON 48

EMPLOYEE 40

CPSC 343: Database Theory and Practice • Fall 2024 49

Reorder JOINs

⋈
W.Essn=E.Ssn

• W.Essn – 38 distinct values selectivity is 1/38→
• E.Ssn – 40 distinct values selectivity is 1/40→
• join selectivity is 1/40

⋈
P.Pnumber=W.Pno

• P.Pnumber – 11 distinct values selectivity is 1/11→
• W.Pno – 11 distinct values selectivity is 1/11→
• join selectivity is 1/11

based on join
selectivity, no
reordering

CPSC 343: Database Theory and Practice • Fall 2024 50

Reorder JOINs

E’ = σSex>'F'(σBdate>'1957-12-31'(EMPLOYEE))
• selectivity of a series of SELECTs is the product

of the individual selectivities = 0.41*0.5 = 0.205
• number of tuples = 0.205*40 = 9

P’ = σPname='Aquarius'(PROJECT)
• 11 distinct values assuming uniform →

distribution, selectivity is 1/11 = 0.09
• number of tuples = 0.09*11 = 1

W = WORKS_ON
• 48 tuples

based on input
tuples as a proxy for
result tuples, P’ is
smallest and
⋈P.Pnumber=W.Pno should

be first

CPSC 343: Database Theory and Practice • Fall 2024 51

Reorder JOINs

E’ is next smallest, but no join condition
directly involves P’ and E’ – this would
introduce a cross product

instead just swap join operands so
smallest things are on the left

P’ ⋈
P.Pnumber=W.Pno

 W
• js is 1/11
• number of result tuples = js |P’| |W| =

(1/11)*1*48 = 4.36

P’ is smallest, so put it into the first
(lowest) join

E’ ⋈
W.Essn=E.Ssn

 (P’ ⋈
P.Pnumber=W.Pno

 W)

(E’ ✕ P’) ⋈
P.Pnumber=W.Pno AND W.Essn=E.Ssn

 W

E’ ⋈
W.Essn=E.Ssn

 (P’ ⋈
P.Pnumber=W.Pno

 W)

(P’ ⋈
P.Pnumber=W.Pno

 W) ⋈
W.Essn=E.Ssn

 E’

CPSC 343: Database Theory and Practice • Fall 2024 52

Reorder JOINs

CPSC 343: Database Theory and Practice • Fall 2024 53

Algorithm

6. Break up PROJECT operations and move them down the
tree as far as possible.
● only include PROJECT immediately above a base table if the

PROJECT can be satisfied completely by only reading an index

● all but the last PROJECT in a series of PROJECTs can be
ignored

● PROJECT can be moved below SELECT if the SELECT
condition involves only the attributes in the PROJECT

● PROJECT can be moved below JOIN if the JOIN condition
involves only the attributes in the PROJECT

• otherwise, PROJECT with just the needed attributes can be added below
JOIN

● PROJECT can be moved below CROSS PRODUCT

CPSC 343: Database Theory and Practice • Fall 2024 54

Move PROJECTs Down

CPSC 343: Database Theory and Practice • Fall 2024 55

Algorithm

7. Address pipelining opportunities.
● pipelining avoids writing intermediate results to disk – output

from one operation is used directly for the next
● typically (only) possible for unary operations and the left operand

of binary operations

CPSC 343: Database Theory and Practice • Fall 2024 56

Pipelining

