Execution Plans

CPSC 343: Database Theory and Practice • Fall 2024

 an execution plan consists of a query tree and an algorithm for each relational algebra operation in the query tree

Implementing SELECT

Some possibilities for simple selection (a single condition):

name	strategy	restrictions
SL	brute force linear search (scan entire file)	always applicable
SB	binary search on the file	must have file ordered on attribute
SH	use hash key	must have file hashed on attribute must be equality condition
SP	use primary index	must have primary index on attribute
SC	use clustering index	must have clustering index on attribute
SS	use secondary index	must have secondary index on attribute

only SL can be pipelined

- SL can be carried out incrementally
- everything else requires random access to the file or an index

CPSC 343: Database Theory and Practice • Fall 2024

All questions make use of the following relational schema and query tree. Assume PROJECT is ordered by that the file for each table is ordered by the primary key, and that there are primary Pnumber indexes for each file as well as indexes on PROJECT.Pname, WORKS_ON.Pno, and SB, SH not applicable for EMPLOYEE.Lname. Pname the index on Pname is a EMPLOYEE (Fname, Minit, Lname, <u>Ssn</u>, Bdate, Address, Sex, Salary, Super_ssn, Dno) secondary index PROJECT (Pname, <u>Pnumber</u>, Plocation, Dnum) - SP, SC not applicable WORKS_ON(Essn, Pno, Hours) π Lname What algorithms are suitable for the $\sigma_{Pname='Aquarius'}$ ⊨ ≥Essn=Ss operation? Choose all that apply. SL 80 4 respondents ^πSsn. Lname ^π Ess SB 40 % 2 respondents [⋈]Pnumbe SH 40 % σBdate>'1957-12-31' 2 respondents SP 0 % ^πPnumber πEssn,Pno SC 40 % EMPLOYEE 2 respondents ^σPname='Aquarius SS 4 respondents 80 % WORKS_ON none of the 0% above PROJECT CPSC 343: Database Theory and Practice • Fall 2024

Implementing JOIN R 🖂					
Some possibilities for join:					
name	strategy	restrictions			
JNL	nested-loop join (brute force) for each record in R, go through every record in S and test if the join condition is satisfied	always applicable			
JSL	single loop join for each record in R, use index to retrieve all matching records of S	requires index on join attribute for one file (S)			
JSM	sort-merge join if necessary, sort files by join attribute scan files in order, matching records according to join attribute	always applicable			
	scan indexes, matching records according to join attribute	requires indexes on join attribute for both files			
 rea JSI pre 	ding of R can be pipelined for JNL, JSL A can be pipelined for R and S if the records vious step in order (so no need to sort)	s come out of the			

61

CPSC 343: Database Theory and Practice • Fall 2024

All questions make use of the following relational sche that the file for each table is ordered by the primary ke ndexes for each file as well as indexes on PROJECT.Pn EMPLOYEE.Lname.	a and query tree. Assume , and that there are primary me, WORKS_ON.Pno, and WORKS_ON.Pno, and - PROJECT	JNL is always applicable JSM is always applicable, though may require sorting – PROJECT is ordered by Pnumber (no sorting) – WORKS_ON is ordered by Essn,Pno (need sorting, or retrieve rows via WORKS_ON.Pno index)		
EMPLOYEE (Fname, Minit, Lname, <u>Sn</u> , Bdate, Address, Sex, S FROJECT (Pname, <u>Pnumber</u> , Plocation, Dnum) WORKS_ON (<u>Essn</u> , <u>Pno</u> , Hours)	Pnumber (no – WORKS_C Essn,Pno (no retrieve rows WORKS_ON			
^π Lname ⊨ Essm=Ssn	JSL requires – there is an WORKS_ON (without dupl can be pipeli	s an index on S index on .Pno and π icate removal) ned		
^π Esen ^π Ssn, Lnar MPnumber=Pno ^σ Bdate>'1957-1	What algorithms are suitable for the ⋈p operation? Choose all that apply.	What algorithms are suitable for the M _{Pnumber-Pno} operation? Choose all that apply.		
^π Pnumber ^π Essn,Pno	JNL 4 respondents 80 %	✓		
³ Pname='Aquarius'	JSL 4 respondents 80 %	<u> </u>		
WORKS_ON	JSM 4 respondents 80 % none of the above 0 %	~		

Implementing PROJECT

Without duplicate elimination, simply extract the desired columns for each record.

• can be pipelined

For duplicate elimination:

name	strategy
PS	sort file (duplicates will be adjacent)
PH	hash file (check each record against others in the bucket it hashes to)
– PS in c	can be pipelined if the records come out of the previous step order

