Implementing SELECT

Some possibilities for simple selection (a single condition):

name	strategy	restrictions
SL	brute force linear search (scan entire file)	always applicable
SB	binary search on the file	must have file ordered on attribute
SH	use hash key	must have file hashed on attribute must be equality condition
SP	use primary index	must have primary index on attribute
SC	use clustering index	must have clustering index on attribute
SS	use secondary index	must have secondary index on attribute

• only SL can be pipelined

- SL can be carried out incrementally
- everything else requires random access to the file or an index

66

CPSC 343: Database Theory and Practice • Fall 2024

Implementing PROJECT

Without duplicate elimination, simply extract the desired columns for each record.

• can be pipelined

CPSC 343: Database Theory and Practice • Fall 2024

For duplicate elimination:

name	strategy
PS	sort file (duplicates will be adjacent)
PH	hash file (check each record against others in the bucket it hashes to)
– PS in c	can be pipelined if the records come out of the previous step order

Implementing JOIN

R 🖂 S

67

Some possibilities for join:

name	strategy	restrictions						
JNL	nested-loop join (brute force) for each record in R, go through every record in S and test if the join condition is satisfied	always applicable						
JSL	single loop join for each record in R, use index to retrieve all matching records of S	requires index on join attribute for one file (S)						
JSM	sort-merge join if necessary, sort files by join attribute scan files in order, matching records according to join attribute	always applicable						
	scan indexes, matching records according to join attribute	requires indexes on join attribute for both files						
 reading of R can be pipelined for JNL, JSL JSM can be pipelined for R and S if the records come out of the previous step in order (so no need to sort) 								

CPSC 343: Database Theory and Practice • Fall 2024

Cost-Based Query Optimization

CPSC 343: Database Theory and Practice . Fall 2024

Many factors contribute to the cost of evaluating a guery: access to secondary storage dominates in large databases (not everything fits into memory at reading/writing disk blocks once, and disks are slow) storage cost storing intermediate results, including reading/writing disk blocks computation cost dominates in small databases in-memory searching, sorting, merging (most data fits in memory) memory usage cost memory used for query processing is not available for other uses communication cost sending query and results between client and database dominates in distributed databases

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Cost Functions

Assumptions:

- storage costs dominate (large DB)
- multilevel indexes

Cost is measured in terms of the number of blocks read and written.

Note.

72

Similar tactics can be employed to work out cost functions given other assumptions e.g. small DB where in-memory computation cost dominates (cost is measured in terms of the number of records accessed) or only single-level indexes.

CPSC 343: Database Theory and Practice • Fall 2024

слатріс	COStTUNE		1				
algorithm	condition	# blocks read					
SL – linear	equality, key	A FUNCTIONS – SELECTndition# blocks ready, keyb/2on averagey, not keybfor rangey, keylog2 bfor rangey, not keylog2 b + $[s/bfr]$ file records (and the file is ordered on the field involved in the condition)y, key1 or 2on the field involved in the conditiony, keyx + 1on the field involved in the condition – can be very inaccurate in specific cases, but reasonably correct on average (can use better estimate if relevant DB stats are available)y, keyx + 1by, keyx + 1by, keyx + 1by, not keyx + sbx + b/2orrect on average (can use better estimate if relevant DB stats are available)n result:s/bfr= selection cardinality (# matches)ra					
search (brute force)	equality, not key range	b	for range				
	equality, key	equality, key log ₂ b					
SB – binary	equality, not key	log ₂ b + [s/bfr]	file records (and				
Scarch	range	log ₂ b + b/2	if the file is ordered				
SH – hash file	equality, key	1 or 2	on the field involve				
SP – primary	equality, key	x + 1	will satisfy the				
index	range	x + b/2	condition – can b				
SC – clustering index	equality	x + [s/bfr]	specific cases,				
	range	x + b/2	but reasonably correct on				
SS –	equality, key	x + 1	average				
secondary	equality, not key	x + s	estimate if relevan				
index	range	x + b ₁ /2 + r/2	DB stats are				
Number of bl x = # levels in i	ocks in result: s ndex, s = selectior	s/bfr n cardinality (# matches)	avaliable)				

Example Cost Eurotions SELECT

Example	Cost	Functions -	- JOIN	(R ⋈ _□	_ _S S
•				N RA	=S B

name	implementation	# blocks read					
JNL – nested-loop join	read in n-2 blocks of R at a time read all blocks of S for each n-2 blocks of R, one at a time use one block of memory for assembling result	$b_{R} + [b_{R}/(n-2)] b_{S}$					
JSL – single-loop join		secondary index: $b_R + R (x_B + s_B)$					
	read in a block of R, find all	clustering index: $b_R + R (x_B + [s_B/bfr_S])$					
	matches of 5 using the index	primary index: $b_R + R (x_B+1)$					
		hash key: b _R + R					
JSM – sort-	sort files (blocks read and written)	external sorting: 2b + 2b $\log_{\min(n-1,b/n)} (b/n) \approx 2b \log_2 b$					
merge join	merge	b _R + b _S					
Number of blocks in result: (js $ R S / bfr_{RS}$) $x_{B} = #$ levels in index on field B, js = join selectivity, n = # memory blocks to use							

Attribute Selectivity and Selection Cardinality

- attribute selectivity (sl)
 - fraction of records satisfying equality condition on the attribute
- selection cardinality (s) = sl*r
 - average number of records satisfying equality condition
 - for key, d = r, sl = 1/r, s = 1
 - for uniformly distributed non-key, sl = 1/d, s = r/d

CPSC 343: Database Theory and Practice • Fall 2024

Join Selectivity

Join selectivity (js) is the fraction of possible records that actually result from a join.

js = | R ⋈ S | / |R| |S|

 $0 \le js \le 1$

Some noteworthy special cases:

- for R × S, js = 1
- for the join condition R.A=S.B
 - if A is a key of R, is $\leq 1/|R|$
 - if B is a key of S, is $\leq 1/|S|$
 - if both are keys, js = min(1/|R|, 1/|S|)
 - if neither is a key, $js = min(s_B/|S|, s_A/|R|)$

External Sorting

Sorting is an important algorithm in query processing.

- ORDER BY requires sorting
- used in duplicate elimination (SELECT DISTINCT)
- can be used in carrying out JOIN (JSM), UNION

What's the best sorting algorithm?

External Sorting

CPSC 343: Database Theory and Practice . Fall 2024

CPSC 343: Database Theory and Practice . Fall 2024

Typical approach is *sort-merge*, similar to merge sort.

- sorting phase sorts one chunk of the file at a time (as much as will fit into memory) using a traditional internal sort
 - number of runs $n_R = b/n$ (each with n blocks)
- merging phase merges sorted runs in a series of passes after first pass, the $n_{\rm R}$ runs have been merged into $n_{\rm R}/d_{\rm M}$ new runs
 - d_M = number of runs that can be merged in one pass = min(n-1,n_R)
 - after second pass, the $n_{\rm R}/d_{\rm M}$ runs have been merged into $n_{\rm R}/(d_{\rm M})^2$ new runs

Overall runtime (number of blocks read/written) is $2b + 2b \log_{d_M}(n_R)$, which can be approximated by **2b log₂ b**.

External Sorting

Sorting in the context of a DB has some particular issues.

- lots of data → speed is important
- lots of data \rightarrow which likely doesn't all fit into memory at one time
 - reducing the number of disk blocks accessed is more important than reducing the number of in-memory operations

External sorting refers to sorting where the data does not fit entirely into memory.

CPSC 343: Database Theory and Practice • Fall 2024

Evaluating Query Cost

What information do we need for evaluating cost functions?

- number of records (r), number of blocks (b)
- blocking factor (bfr)
 - can be calculated directly or estimated from b, r
 - bfr_{RS} can be calculated explicitly if column sizes are known, or estimated as $[1/(b_R/r_R+b_S/r_S)] = [bfr_Rbfr_S/(bfr_R+bfr_S)]$
- physical file organization, available indexes, number of levels (x) of multilevel indexes, number of first-level index blocks (b₁)
- number of distinct values (d)
- attribute selectivity (sl), selection cardinality (s) for each attribute
 - can be computed from d and r (requires assumption of uniform distribution or knowledge of distribution if non-key)

а

Obtaining the Necessary Information

DBMS stores this information.

CPSC 343: Database Theory and Practice • Fall 2024

 frequently-changed values may not be kept completely up-to-date

DB Stats

_											
	table		colur	nn	# dis value	tinct s (d)	low v	alue	hig	h value	
			Ploca	tion	20	00]	L		200	
	PROJECT		Pnum	ber	20	00	1	L		2000	
			Dnum	ı	5	0]	L		50	l
			Dnum	ber	5	0	1	L		50	
	DEPARTI		Mgr_s	sn	5	0	1	L		50	
			Ssn		100	000	1	L		10000	
			Dno		5	0	1	L		50	
			Salar	/	50	00	1	L		500	
			Bdate	2			1945-	01-01	198	39-12-31	
able	e	# re(cords r)	# b (locks (b)	inde	x	# lev (x)	els	# leve blocks	-
PROJECT		20	000	1	.00	PROJ_PLOC		2		4	
DEPARTMENT		5	0		5	EMP_	SSN	2		50	
MPL	OYEE	10	000	2	000	EMP_	SAL	2		50	
CPSC 34	13: Database Theory a	and Practice	Fall 2024								

