Exam 3

* ER-to-relational mapping problem points

derived attributes

« these are computed from other things, not stored outright - not included
directly in the relational schema (one might create a view including them)

weak entity types
« the weak entity type becomes a relation with its own attributes plus any
attributes of the identifying relationship(s) plus the PK of the entity type(s)
on the other end of the identifying relationship(s)

the PK for the weak entity type’s relation is its own partial key plus the PK of
the entity type(s) on the other end of the identifying relationship(s)

ROOM(room_type, capacity, room_number,hotel)
ROOM.hotel - HOTEL.id

e —
e —
22

CPSC 343: Database Theory and Practice « Fall 2024

Exam 3

* ER-to-relational mapping problem points

specialization
« there are several options for mapping specialization, but a reasonable one
for a disjoint specialization where both supertype and subtypes have
attributes is for every entity type to have its own relation
supertype — relation with its own attributes
subtype - relation with its own attributes plus the PK of the supertype as an
FK

PROPERTY (id, address,rent_amount)

HOUSE (id, num_bedrooms,num_bath)
HOUSE.id - PROPERTY.id

APARTMENT (id, num_bedrooms, unit_number, floor)
APARTMENT.id - PROPERTY.id

e ————————————————————
S —
24

CPSC 343: Database Theory and Practice « Fall 2024

Exam 3

* ER-to-relational mapping problem points

relationships

* to capture cardinality and participation constraints, the FK approach is
preferred for 1:N relationships — only use the separate relation approach
for N:M

« include NOT NULL constraints when there is total participation and that
attribute is not already part of a PK

« don't forget to include PKs and FKs

CPSC 343: Database Theory and Practice « Fall 2024 23

Exam 3

* ER-to-relational mapping problem points

categories
* both the category type itself and the types belonging to that category
become relations
 add a surrogate key to the category type if it doesn't already have a PK
 add that surrogate key (or the category type’s PK) to each of the types
belonging to that category as an FK

PAYMENT (id,date,amount)
tenant NOT NULL
PAYMENT. tenant - TENANT.id

CREDIT_CARD(number, name,expiration,cvv,payment)
CREDIT_CARD.payment - PAYMENT.id

PAYPAL (transaction_id,payment)
PAYPAL .payment - PAYMENT.id

CPSC 343: Database Theory and Practice « Fall 2024 25

Exam 3

First Normal Form (1NF)
all values are atomic — no composite attributes

each tuple has a single value for each attribute (can
be NULL) — no multivalued attributes

every relation has a primary key

don't forget the last part — having a PK

address all three points when explaining why a relational
schemais in INF

(atomic and single-valued are givens — there’s no notation indicating that
because attributes in a relational schema are those things)

e —
e —
26

CPSC 343: Database Theory and Practice « Fall 2024

Exam 3

Identify how to implement the constraints below: via column-based settings (by choosing the domain,
specifying a default value, or setting primary key, NOT NULL, or UNIQUE tags), foreign keys, CHECK
constraints, or triggers. Be specific - don't just say “domain”, “default value”, “check”, etc but
indicate which column(s) for a column-based setting, the particular domain or default value, the
foreign key and what it references, the condition for the CHECK constraint. For each trigger, give the
body of the trigger definition and indicate the when, action, and table. Yipu do not need to write a full
CREATE TABLE, ALTER TABLE, or CREATE TRIGGER statement.

what to write —
for a domain constraint, give the actual data type
e.g. TINYINT or DECIMAL (4,2)
for a foreign key, give the actual foreign key
e.g. DISTRIBUTION. habitat - HABITAT.id

for a CHECK constraint, give the actual condition

e.g. CHECK (area > 0)
for a trigger, identify the when, action, table elements and give
the body of the trigger — you don’t need the full CREATE
TRIGGER header

including more isn't a problem, but not including enough is

CPSC 343: Database Theory and Practice « Fall 2024 28

Exam 3

Second Normal Form (2NF)
satisfies INF

for all FDs X - A, either A has no non-key attributes
or X is not a proper subset of a key

2NF eliminates dependencies on partial keys

a dependency on a non-key (such as salesperson -
commission) is not a problem here

if multiple attributes are underlined, all of them together
constitute the PK

CAR_SALE(vin,make,model,year,color,date_sold,sale price,
salesperson,commission, buyer name,buyer address)

vin - make, model, year, color depends on a partial key —
violates 2NF

CPSC 343: Database Theory and Practice « Fall 2024 27

Exam 3

#4

(a) “isanumber1, 2,3, ..."
account for both that these are integers and that negative and 0 values
are excluded
a domain constraint is necessary for the integer part and can accommodate
“not negative” but isn’t quite sufficient for also handling “not zero”
“there are at most a few dozen regions” factors into the most appropriate
integer data type (TINYINT)

(b) the constraint here is that DISTRIBUTION.area is a number
with two decimal places and is non-zero

“if there is no habitat of some type in a particular region, there should not
be an entry in DISTRIBUTION" is not an additional constraint — it is the
rationale for why area is constrained to be non-zero (if you can’t puta 0
area value into DISTRIBUTION, you can't put an entry in DISTRIBUTION
where the area should be 0)

DECIMAL (m,n) means that there are m digits total and n digits after the
decimal place — so DECIMAL(5,2) means values up to 999.99 are
possible

CPSC 343: Database Theory and Practice « Fall 2024 29

Exam 3

#4

(c) “the total area for different habitat types within a region
cannot exceed the area of the region itself”

this must be a trigger because the total area for the different habitat types
within a region requires summing multiple rows in DISTRIBUTION and
then that value must be compared to a value from REGION

be careful to account for all of the situations where this constraint needs to
be checked
INSERT and UPDATE in DISTRIBUTION could affect the total area for habitat
types for a region — increasing the total area could violate the constraint
DELETE in DISTRIBUTION also does, but it can only decrease the total
which won't violate the constraint if it wasn’t already violated
UPDATE in REGION could affect the region’s area — decreasing the region’s
area could violate the constraint
INSERT in REGION isn’t a problem because of the FK
DISTRIBUTION.region -~ REGION.number — there can't be any entries
in DISTRIBUTION for that region if the region is only just being added
DELETE in REGION is handled by the FK ON DELETE settings — since
DISTRIBUTION.region is part of the PK and thus NOT NULL, a DELETE
in REGION would need to be blocked if there are entries in
DISTRIBUTION for that region

CPSC 343: Database Theory and Practice « Fall 2024 30

e — —_—_—_—— ———
e ——
32

CPSC 343: Database Theory and Practice « Fall 2024

Exam 3

#4

(c) “the total area for different habitat types within a region
cannot exceed the area of the region itself”

when summing rows in DISTRIBUTION to find the total area for the
region, be careful to take into account the INSERT/UPDATE operation
itself
for INSERT, there is an area value for the new row which is not yet in
DISTRIBUTION — must add the new value into the sum from DISTRIBUTION
for UPDATE, there is already an area value for the region in DISTRIBUTION
but the update may include a different value — must subtract the old value and
add the new value from the sum for DISTRIBUTION
remember NEW. col and OLD. col to refer to columns in the row involved in
the INSERT/UPDATE/DELETE operation

CPSC 343: Database Theory and Practice « Fall 2024 31

Exam 4

procedures vs functions
functions cannot change data and return exactly one value
functions can signal errors (as can procedures)

prefer functions if functions are applicable — use a procedure if
you have to, and a function otherwise

returning values

functions return their one value using a RETURN statement
the caller can utilize the returned value in an expression

for procedures, use OUT parameters if there is a fixed number

(> 1) of values returned
the caller can capture these values in variables so subsequent SQL
statements can utilize them

unbound SELECTSs (a SELECT without INTO) “return” a result

set, but this result set is only available to an application, not

subsequent SQL statements

CPSC 343: Database Theory and Practice « Fall 2024 33

Exam 4

calling routines
function calls are expressions — use where a value is needed
SELECT *

FROM SAILOR S
WHERE numReservations(S.Sid) >= 2

SELECT S.Sid,S.Sname, numReservations(S.Sid)
FROM SAILOR S

procedures are called with a CALL statement
variables must be provided for OUT parameters

CALL addReservation(22,103,'2024-12-06");

CALL findDateRange(22,@startdate,@enddate);
SELECT @startdate, @enddate;

SELECT B.Bid,B.Bname,B.Color
FROM BOAT B NATURAL JOIN RESERVATION R
WHERE R.date >= @startdate AND R.date <= @enddate;

CPSC 343: Database Theory and Practice « Fall 2024

Exam 4

#3 — the procedure needs to:

check if the existing flight number exists and the new flight

number does not — query FLIGHT

insert a row into FLIGHT with the new flight number and arrival

and departure times from the parameters and the origin,

destination, and miles from the existing row for the existing flight
can either use SELECT ... INTO ... to retrieve the existing info into
variables for a subsequent INSERT, or do everything in one step with
INSERT ... SELECT

insert a row into SEATS for each row of SEATS involving the

existing flight number

while it is possible to do this in one step with INSERT ... SELECT, the
problem specified that you must use a CURSOR

CPSC 343: Database Theory and Practice « Fall 2024

Exam 4

transactions are needed to ensure atomicity and
serializability when there are multiple steps in an
operation and
(atomicity) it's possible for one or more steps to fail while others
succeed
(serializability) changes to the database between those steps
could result in inconsistent results

CPSC 343: Database Theory and Practice « Fall 2024 35

Exam 4

#5
a) “find the destination airports for which the cheapest route from
ROC ...”
this is a query about airports, so the FROM table should be AIRPORT —
“destination” is referring to the usage of cheapestCost(origin,dest)
which returns the cost of the cheapest route from origin to dest
though, because there won't be route at all to an airport that isn’t the
destination for some flight in FLIGHT, it is possible to use FLIGHT instead —
SELECT DISTINCT would then be required
cheapestCost(origin,dest) returns the cost of the cheapest route —
pick those airports for which the cost from ROC is more than $400

b)
also display the destination and length of flight —
longestFlightUnder “returns” that info, but stored in variables, so
SELECT is needed to display the values

CPSC 343: Database Theory and Practice « Fall 2024 37

Exam 4

° #6
(a) transactions not needed

« this can be done with a single UPDATE statement (every statement is
automatically its own transaction)

(b) needs transactions
« this involves three steps — if reservations are made (for example) between
steps, the numbers reported may not be consistent with a single state of
the database
there may not be harm in inconsistent numbers, but that's an issue of whether
serializability is important for this application, not whether transactions are
needed to enforce serializability

(c) needs transactions
« this involves multiple steps — checking for a route (where “cheapest

available fare” implies also checking for availability of seats) and then

making potentially multiple reservations for the flight(s) involved
need to ensure the last available seat isn't taken between finding the route
and making the reservations and/or that if making one of the reservations fails
(e.g. because the last available seat was taken), the customer isn’t left with an
incomplete set of reservations

CPSC 343: Database Theory and Practice « Fall 2024

