Lighting and Shading

A Bit About Light

when light strikes a surface...

- some energy is absorbed (and is converted to heat)
- some is transmitted (if not opaque)
- · the rest is reflected

CPSC 424: Computer Graphics • Fall 2025

Lights and Materials

We see what we see because light bounces off things in the world and into our eyes.

The interaction of light and surfaces is essential for -

• the perception of 3D in a 2D image

realism

https://pixabay.com/illustrations/sphere-ball-plastic-round-3d-953964/ https://commons.wikimedia.org/wiki/File:Blender3D_MarbleExample1.jpg
https://www.maxpixel.net/Wood-Toy-Earth-Blue-Bail-Plastic-Green-587688
https://www.publicdomainpictures.net/Projet-privale-phprimage=80376&picture=plastic-easter-eggs
CPSC 424: Computer Grag https://en.wikipedia.org/wiki/File:Glass_Float_Small.JPG

A Bit About Light

light energy reaching viewer depends on...

- position and orientation of the light source(s)
- position and orientation of the eye
- position and orientation of the surface

(surface material)

- color of the surface
- reflectivity and transparency of the surface
- roughness of the surface

(light source)

- color of light produced by the light source(s)
- polarization

Types of Lighting Models

 a lighting model specifies how to determine the color (illumination) of a point in the scene

CPSC 424: Computer Graphics • Fall 2025

Types of Lighting Models

- physically-based models
 - model the actual physical energy transfer in the scene
 - idea: if you use the same math as reality, it'll look good right?
 - often very computationally intensive
- non-physically-based models
 - model the appearance rather than the physics

Types of Lighting Models

- non-global illumination models
 - concentrate on direct illumination
 - direct illumination comes directly from a light source
 - can't capture effects such as shadows, inter-object reflection, refraction, fog

- global illumination models
 - consider all light in the scene, including indirect illumination
 - *indirect illumination* is light which has first bounced off at least one other object

CPSC 424: Computer Graphics • Fall 2025

http://sunflow.sourceforge.net/index.php?pg=gall https://commons.wikimedia.org/wiki/File:Cornell_box.png

A Simple Lighting Model

- non-global illumination
 - but approximates global illumination
 - does not handle interobject reflection
- · not physically-based
- achromatic light

- two kinds of light sources
 - point light sources
 - ambient light
- model two kinds of reflection (direct illumination)
 - diffuse reflection
 - specular reflection
- no transparency
- no shadows

CPSC 424: Computer Graphics • Fall 2025

Lighting

light reaching viewer =

light produced by light source

fraction of light reaching the surface

fraction of light reflected in the direction of the viewer

CPSC 424: Computer Graphics • Fall 2025

Modeling Reflection diffuse (Lambertian) reflection typical of dull matte surfaces specular reflection models bright highlights on shiny objects CPSC 424: Computer Graphics • Fall 2025

Modeling Reflection

• ...fraction of light reflected in the direction of the viewer...

incident light can be reflected in any direction what fraction is reflected in a particular direction is a property of the surface material fully described by a bidirectional reflectance distribution function (BRDF)

our simple lighting model approximates the BRDF with the combination of two components diffuse (Lambertian)

and specular reflection

CPSC 424: Computer Graphics • Fall 2025 https://commons.wikimedia.org/wiki/File:BSDF05_800.png https://cgithub.com/tensorflow/graphics/hotebooks/reflectance.ipynb

Math - Vectors

$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$

the length of v

$$|v| = \sqrt{x^2 + y^2 + z^2}$$

a unit vector has length 1

make a vector length 1 by normalizing

$$\frac{v}{|v|} = \begin{bmatrix} x/|v| \\ y/|v| \\ z/|v| \end{bmatrix}$$

Math - Dot Products

• the dot product of two vectors *a* and *b* is the sum of the products of each component

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^n a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

 the value of the dot product is related to the angle between the vectors

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \, \|\mathbf{b}\| \cos \theta,$$

- if a and b are unit vectors, $\mathbf{a} \cdot \mathbf{b} = \cos \theta$

 $a \cdot b = |a||b| \cos \theta$

CPSC 424: Computer Graphics • Fall 2025

energy incident on surface depends on the orientation of the surface with respect to the light – proportional to cos θ = N·L
 h = d cos θ thus energy incident on surface is proportional to h

with a little geometry, can show that the angle between N and L is also $\boldsymbol{\theta}$

Mathematics of Reflection – Geometric Ingredients N – outward pointing surface normal V – vector from point to viewer's eye L – vector from point to the light source surface normal is a vector perpendicular to the surface all are unit vectors (length 1)

"background" light in scene approximates indirect illumination CPSC 424: Computer Graphics - Fall 2025 24

Notes

- constant diffuse reflection coefficient md is an approximation
 - actually depends on light color, incident angle, surface properties
- constant specular reflection coefficient ms is an approximation
 - actually depends on light color, incident angle, surface properties
 - for opaque materials, value is nearly constant for all angles
 - for transparent materials, value rises sharply to 1 for angles near 90 degrees

PSC 424: Computer Graphics • Fall 2025

.

Mathematics of Ambient Light

- has no (direct) source comes from all directions
 - incident light energy is the same for all surfaces in all directions
- reflected uniformly in all directions (diffuse model)
 - independent of viewer position

$$I_{ambient} = ma I_a$$

 I_a = intensity of ambient light "source" ma = ambient reflection coefficient (0 \leq ma \leq 1)

CPSC 424: Computer Graphics • Fall 2025

__ 25

Putting It All Together

- factors based on geometry of scene
 - N, L, V
 - R
- · factors based on the surface material
 - ma, md, ms, mh
- factors based on the light source
 - _ |_a, |_s

$$I\!=\!maI_{a}\!+\!\sum_{all\,lights}\left[md\:I_{s}max\left|0,(N\!\cdot\!L)\right|\!+\!ms\:I_{s}max\left|0,(R\!\cdot\!V)\right|^{mh}\right]$$

CPSC 424: Computer Graphics • Fall 2025

Putting It All Together

term	energy leaving light source	fraction of energy received at surface	fraction of energy leaving surface in direction of viewer	total
ambient light	l _a	1	ma	ma I _a
diffuse reflection	l _s	max(0, N·L)	md 0 if V⋅N < 0	md I_s max(0,N·L) 0 if V·N < 0
specular reflection	l _s	1 0 if L·N < 0	ms max(0, R·V) ^{mh} 0 if V·N < 0	ms I_s max $(0,R\cdot V)^{mh}$ 0 if $V\cdot N < 0$ or $L\cdot N < 0$

$$I\!=\!maI_{a}\!+\!\sum_{\mathit{all\,lights}}\!\left[\!md\,I_{s}max\left[0,(N\!\cdot\!L)\right]\!+\!ms\,I_{s}\,max\left[0,(R\!\cdot\!V)\right]^{mh}\right]$$