GLSL versions

* WebGL 1.0 requires GLSL 1.00
* WebGL 2.0 can use GLSL 1.00 or GLSL 3.00
some features require GLSL 3.00

* must use the same version for both vertex and fragment
shader within a shader program

* book addresses both GLSL 1.00 and 3.00
we'll only cover GLSL 1.00

« refer to the book (section 6.3) for more info about GLSL

CPSC 424: Computer Graphics « Fall 2025

GLSL — Vector Types

* vectors — vec2, vec3, vec4 and the forms for other types

can use array notation or several forms of dot notation
« v[0], v[1], v[2], V[3] - use when vector represents a 1D array
° V.X, V.Y, V.Z,V.W -use when vector represents a point or vector
° V.r,v.g, v.b, v.a - use when vector represents a color
© V.S, V.t, v.p, v.q - use when vector represents texture coordinates

constructor veci(..) takes a list of expressions which together
provide the correct number of values

vec2 v - vec2(1.9, 2.0);
vecd w = vecd(v, v); // wis (1.6, 2.6, 1.0, 2.0)

« extra values are dropped, but it isn't legal to include extra expressions
where all of their values are dropped
« special case: veci(value) creates a vector with all entries equal to value
* supports automatic type conversion
for bool/int: true - 1, false - 0; 0 - false, non-zero - true

swizzlers allow convenient access and recombination of
components

° e.0.Vv.xy,v.rrg

vec3 v = vec3(1.9, 2.0, 3.0);
vec3 w = vec3(v.zx, 4.0); //w is (3.0, 1.8, 4.0)

« can use swizzlers on the left side of an assignment if there are no L)

repeated components

GLSL - Types

* variables are declared with a type

scalar types — float, int, bool
note that GLSL vec
vector types — vec2, vec3, vec4 (of floats) and mat types are
ivec2, ivec3, ivec4 (of ints) it ffenm e
JavaScript types
bvec2, bvec3, bvec4 (of bools) provided by
glmatrix even

matrix types — mat2, mat3, mat4 (of floats) though the names are
the same

structs

arrays

CPSC 424: Computer Graphics » Fall 2025

GLSL — Matrix Types

* matrix types — mat2, mat3, mat4 Row-major order

3
3
A GLSL uses column-major order { %j

Column-major order

2 3
1 2 3
use array notation
¢ format3 m, m[2][1] is an element, m[2] is a column

constructor mati(..) takes a list of expressions which together
provide the correct number of values
« special case: mati(value) creates a matrix with all diagonal entries equal
to value and other entries 0
e.g. mat2(1), mat3(1), mat4 (1) yield identity matrices

CPSC 424: Computer Graphics + Fall 2025

GLSL - Structs

struct LightProperties {
vec4 position;

vec3 color;

float intensity;

* structs bt

a collection of named fields, or a class with only public instance
variables and not methods

defines a type which can be used to declare variables
* e.g. LightProperties light;

fields are accessed by varname.field
» e.g. light.position, light.color, light.intensity

construct with a list of values with exact types in the same order
as declared

* e.g. light = LightProperties(vec4(x,y,z,1),vec3(r,g,b),1.0);

* no type conversion

CPSC 424: Computer Graphics « Fall 2025 72

GLSL Qualifiers

+ storage qualifiers — uniform, const
attribute, varying

const value cannot be changed after initialization

uniform

« can be used by both vertex and fragment shaders

+ can use the same variable in both shaders (types must be the same)

+ can be any type, including array and struct
arrays and structs aren't supported directly by JavaScript — must treat each as
a separate uniform value

+ use JavaScript gl.uniformMatrixNfv () for matN
1D array in column major order

2" parameter must be false (can be true in GLSL 3.00 to indicate row-major
order)

transformLoc = gl.getUniformLocation{prog, "transform");
gl.uniformMatrix3fv(transformLoc, false, [1,8,8, 8,1,8, 8,080,111);

CPSC 424: Computer Graphics « Fall 2025 7

GLSL — Arrays

* arrays

1D only
base type can be a basic type or struct type

size is specified in the variable declaration
* must be an integer constant
» C-style — goes after the variable name rather than the type
© e.g.int A[10]
use array notation
* index expression can only contain integer constants and for loop
variables (with one exception)

no bounds checking

CPSC 424: Computer Graphics + Fall 2025 73

GLSL Qualifiers

attribute
= can only be used in vertex shaders
« only for types float, vec2, vec3, vec4, mat2, mat3, mat4

matrix attributes aren't supported directly by JavaScript so they are treated as
a set of vector attributes (one per column)

varying
only for types float, vec2, vec3, vec4, mat2, mat3, mat4 and arrays of
those types

should be declared in both vertex and fragment shaders (must have the
same type in both)

read-only in the fragment shader
should be written (and can be read) in vertex shader

. .

.

CPSC 424: Computer Graphics + Fall 2025

GLSL Qualifiers

* precision qualifiers — highp, mediump, lowp

specifies the range and precision of values used by the shaders
GLSL specifies minimum requirements

defaults
« vertex shader — highp for ints and floats
« fragment shader — mediump for ints

must specify for floats in fragment shader
« can set for individual variables
e.g. varying highp float v;
« can set for all float variables
e.g. precision mediump float;
« many fragment shaders support highp even though it is not required
book gives code to use highp if supported and mediump otherwise

CPSC 424: Computer Graphics « Fall 2025 76

GLSL Expressions

° operators +, -, *, /, ++, -- for float and int
no automatic type conversion (not even int - float)

» overloaded operators
mat*mat, mat*vec to multiply matrices and vectors

vec+scalar, vec-scalar, vec*scalar, vec/scalar applies the operation to
each component of the vector

vec+vec, vec-vec, vec*vec, vec/vec applies the operation to each pair
of components
« relational operators
<, >, <=, >=only apply to int, float
==, I= work with all built-in types except sampler types
« vectors and matrices are only equal if all components are equal

* boolean operators — !, &&, ||, ™ (XOR)
e =, +=, -=, *= /= work as usual

CPSC 424: Computer Graphics « Fall 2025 78

GLSL Qualifiers

¢ invariant

requires that exactly the same value be used when the same
expression occurs in different places

« e.g. for a multipass algorithm where several shaders are invoked in turn —
want to ensure that the gl_Position computed is the same in all cases

only applies to varying variables or predefined variables (e.g.
gl Position, gl FragCoord)

CPSC 424: Computer Graphics + Fall 2025 77

GLSL Functions require float params

* vector functions
dot(u,vVv)
cross(u,v)
length(v)
distance(p,q)
normalize(v)

* utility functions
mix(x,y,t)
- 0<sts1
* computes x*(1-t)+y*t
clamp(x, low,high)
« returns low if x < low, high if x > high, x otherwise
smoothstep(s,t,x)
s s<t
- returns 0 if x < s, 1 if x > t, interpolated value in range 0..1 otherwise

CPSC 424: Computer Graphics + Fall 2025 79

GLSL Functions require float params

trig functions — radians
sin, cos, tan
asin, acos, atan

math functions
log, exp
pow, sqrt
abs
floor, ceil
min, max

also min(v, f), max(v, f) where each element of vector v is
compared to scalar f

mod(x,y)
returns x-y*floor(x/y)

CPSC 424: Computer Graphics « Fall 2025 80

GLSL Control Structures

unless otherwise noted, syntax is C-style (also similar to
Java)

conditionals
if, including else and else if

loops

only supports a limited version of for
loop variable must must be declared in the initialization part of the loop
can only be int or float

initial value must be a constant or constant expression (involving only literal
constants or constant variables)

test condition can only be of the form var op expr
loop variable can only be updated in the update part of the loop

update must be var++, var--, var += expr, var -= expr where expris a
constant expression

can include break, continue

CPSC 424: Computer Graphics « Fall 2025 82

GLSL User-Defined Functions

must be declared before used
declaration can be full definition or prototype

can be overloaded

return type cannot include arrays (either directly or as part
of a struct)
array parameters must include size as part of the
declaration
parameters can be in, out, or inout

default is in (keyword can be omitted)

for out and inout parameters, actual parameter must be
something that can be assigned to (variable or swizzler) rather
than an expression

cannot be recursive

CPSC 424: Computer Graphics + Fall 2025 81

GLSL Limits

limits specify what a WebGL implementation is required to
provided
particular implementations may support more

book lists, along with how to query the actual limits from
JavaScript

e.g. number of attribute/uniform variables, textures

e.g. viewport, texture image size

e.g. line width, point size

usage
for maximum portability, stick within the limits

if you need more, check so you can output an error if the device
can't support your program

CPSC 424: Computer Graphics + Fall 2025 83

