

CPSC 424: Computer Graphics • Fall 2025 68

GLSL versions

• WebGL 1.0 requires GLSL 1.00
• WebGL 2.0 can use GLSL 1.00 or GLSL 3.00

– some features require GLSL 3.00

• must use the same version for both vertex and fragment
shader within a shader program

• book addresses both GLSL 1.00 and 3.00
– we’ll only cover GLSL 1.00

• refer to the book (section 6.3) for more info about GLSL

CPSC 424: Computer Graphics • Fall 2025 69

GLSL – Types

• variables are declared with a type
– scalar types – float, int, bool

– vector types – vec2, vec3, vec4 (of floats)
 ivec2, ivec3, ivec4 (of ints)
 bvec2, bvec3, bvec4 (of bools)

– matrix types – mat2, mat3, mat4 (of floats)

– structs

– arrays

note that GLSL vec
and mat types are
distinct from the
JavaScript types
provided by
glmatrix even
though the names are
the same

CPSC 424: Computer Graphics • Fall 2025 70

GLSL – Vector Types

• vectors – vec2, vec3, vec4 and the forms for other types
– can use array notation or several forms of dot notation

• v[0], v[1], v[2], v[3] - use when vector represents a 1D array
• v.x, v.y, v.z, v.w - use when vector represents a point or vector
• v.r, v.g, v.b, v.a - use when vector represents a color
• v.s, v.t, v.p, v.q - use when vector represents texture coordinates

– constructor veci(…) takes a list of expressions which together
provide the correct number of values

–

–

–

• extra values are dropped, but it isn't legal to include extra expressions
where all of their values are dropped

• special case: veci(value) creates a vector with all entries equal to value
• supports automatic type conversion

– for bool/int: true → 1, false → 0; 0 → false, non-zero → true
–

– swizzlers allow convenient access and recombination of
components

• e.g. v.xy, v.rrg
• can use swizzlers on the left side of an assignment if there are no

repeated components CPSC 424: Computer Graphics • Fall 2025 71

GLSL – Matrix Types

• matrix types – mat2, mat3, mat4

– GLSL uses column-major order
–

–

–

–

–

–

–

–

– use array notation
• for mat3 m, m[2][1] is an element, m[2] is a column

– constructor mati(…) takes a list of expressions which together
provide the correct number of values

• special case: mati(value) creates a matrix with all diagonal entries equal
to value and other entries 0

– e.g. mat2(1), mat3(1), mat4(1) yield identity matrices

CPSC 424: Computer Graphics • Fall 2025 72

GLSL – Structs

• structs
– a collection of named fields, or a class with only public instance

variables and not methods
– defines a type which can be used to declare variables

• e.g. LightProperties light;

– fields are accessed by varname.field
• e.g. light.position, light.color, light.intensity

– construct with a list of values with exact types in the same order
as declared

• e.g. light = LightProperties(vec4(x,y,z,1),vec3(r,g,b),1.0);
• no type conversion

struct LightProperties {
 vec4 position;
 vec3 color;
 float intensity;
};

CPSC 424: Computer Graphics • Fall 2025 73

GLSL – Arrays

• arrays
– 1D only
– base type can be a basic type or struct type

– size is specified in the variable declaration
• must be an integer constant
• C-style – goes after the variable name rather than the type
• e.g. int A[10]

– use array notation
• index expression can only contain integer constants and for loop

variables (with one exception)

– no bounds checking

CPSC 424: Computer Graphics • Fall 2025 74

GLSL Qualifiers

• storage qualifiers – uniform, const
 attribute, varying

– const value cannot be changed after initialization

– uniform
• can be used by both vertex and fragment shaders
• can use the same variable in both shaders (types must be the same)
• can be any type, including array and struct

– arrays and structs aren't supported directly by JavaScript – must treat each as
a separate uniform value

• use JavaScript gl.uniformMatrixNfv() for matN
– 1D array in column major order
– 2nd parameter must be false (can be true in GLSL 3.00 to indicate row-major

order)

CPSC 424: Computer Graphics • Fall 2025 75

GLSL Qualifiers

– attribute
• can only be used in vertex shaders
• only for types float, vec2, vec3, vec4, mat2, mat3, mat4

– matrix attributes aren't supported directly by JavaScript so they are treated as
a set of vector attributes (one per column)

– varying
• only for types float, vec2, vec3, vec4, mat2, mat3, mat4 and arrays of

those types
• should be declared in both vertex and fragment shaders (must have the

same type in both)
• read-only in the fragment shader
• should be written (and can be read) in vertex shader

CPSC 424: Computer Graphics • Fall 2025 76

GLSL Qualifiers

• precision qualifiers – highp, mediump, lowp
– specifies the range and precision of values used by the shaders
– GLSL specifies minimum requirements

– defaults
• vertex shader – highp for ints and floats
• fragment shader – mediump for ints

– must specify for floats in fragment shader
• can set for individual variables

– e.g. varying highp float v;
• can set for all float variables

– e.g. precision mediump float;
• many fragment shaders support highp even though it is not required

– book gives code to use highp if supported and mediump otherwise

CPSC 424: Computer Graphics • Fall 2025 77

GLSL Qualifiers

• invariant

– requires that exactly the same value be used when the same
expression occurs in different places

• e.g. for a multipass algorithm where several shaders are invoked in turn –
want to ensure that the gl_Position computed is the same in all cases

– only applies to varying variables or predefined variables (e.g.
gl_Position, gl_FragCoord)

CPSC 424: Computer Graphics • Fall 2025 78

GLSL Expressions

• operators +, -, *, /, ++, -- for float and int
– no automatic type conversion (not even int → float)

• overloaded operators
– mat*mat, mat*vec to multiply matrices and vectors
– vec+scalar, vec-scalar, vec*scalar, vec/scalar applies the operation to

each component of the vector
– vec+vec, vec-vec, vec*vec, vec/vec applies the operation to each pair

of components

• relational operators
– <, >, <=, >= only apply to int, float
– ==, != work with all built-in types except sampler types

• vectors and matrices are only equal if all components are equal

• boolean operators – !, &&, ||, ^^ (XOR)

• =, +=, -=, *=, /= work as usual

CPSC 424: Computer Graphics • Fall 2025 79

• utility functions
– mix(x,y,t)

• 0 ≤ t ≤ 1
• computes x*(1-t)+y*t

– clamp(x,low,high)
• returns low if x < low, high if x > high, x otherwise

– smoothstep(s,t,x)
• s < t
• returns 0 if x < s, 1 if x > t, interpolated value in range 0..1 otherwise

GLSL Functions

• vector functions
– dot(u,v)
– cross(u,v)
– length(v)
– distance(p,q)
– normalize(v)

require float params

CPSC 424: Computer Graphics • Fall 2025 80

GLSL Functions

• trig functions – radians
– sin, cos, tan
– asin, acos, atan

• math functions
– log, exp
– pow, sqrt
– abs
– floor, ceil
– min, max

• also min(v,f), max(v,f) where each element of vector v is
compared to scalar f

– mod(x,y)
• returns x-y*floor(x/y)

require float params

CPSC 424: Computer Graphics • Fall 2025 81

GLSL User-Defined Functions

• must be declared before used
– declaration can be full definition or prototype

• can be overloaded

• return type cannot include arrays (either directly or as part
of a struct)

• array parameters must include size as part of the
declaration

• parameters can be in, out, or inout
– default is in (keyword can be omitted)
– for out and inout parameters, actual parameter must be

something that can be assigned to (variable or swizzler) rather
than an expression

• cannot be recursive

CPSC 424: Computer Graphics • Fall 2025 82

GLSL Control Structures

• unless otherwise noted, syntax is C-style (also similar to
Java)

• conditionals
– if, including else and else if

• loops
– only supports a limited version of for

• loop variable must must be declared in the initialization part of the loop
– can only be int or float
– initial value must be a constant or constant expression (involving only literal

constants or constant variables)
• test condition can only be of the form var op expr
• loop variable can only be updated in the update part of the loop

– update must be var++, var--, var += expr, var -= expr where expr is a
constant expression

• can include break, continue

CPSC 424: Computer Graphics • Fall 2025 83

GLSL Limits

• limits specify what a WebGL implementation is required to
provided
– particular implementations may support more

• book lists, along with how to query the actual limits from
JavaScript
– e.g. number of attribute/uniform variables, textures
– e.g. viewport, texture image size
– e.g. line width, point size

• usage
– for maximum portability, stick within the limits
– if you need more, check so you can output an error if the device

can't support your program

