

CPSC 424: Computer Graphics • Fall 2025 105

Handling Lighting in WebGL

• two-sided lighting

• materials and lights – structs
• multiple lights – arrays

• positioning lights (EC, WC, OC)

CPSC 424: Computer Graphics • Fall 2025 106

Two-Sided Lighting

• can add parameters to shaders for different front and
back materials

• fragment shader variable gl_FrontFacing indicates
which face is being drawn

• for per-vertex shading, vertex shader must compute both
colors (and pass to fragment shader)
– fragment shader uses gl_FrontFacing to determine which to

use
• for per-pixel shading, vertex shader can pass outward

normal
– light, materials properties are uniforms and are available directly

to the fragment shader
– fragment shader uses gl_FrontFacing to determine whether to

flip normal, then computes color for the desired side

CPSC 424: Computer Graphics • Fall 2025 107

GLSL Structs

• working with GLSL structs
– in GLSL

defining a struct is convenient when there
are multiple related shader parameters,
especially if they are passed to helper
functions or duplicated (e.g. multiple lights
or front and back materials)

CPSC 424: Computer Graphics • Fall 2025 108

GLSL Structs

• working with GLSL structs
– in javascript – each field of the struct is a separate parameter

• need location variable (+ buffer for attributes)
– convenient to use a javascript object to group, rather than multiple separate

variables

• need to set

CPSC 424: Computer Graphics • Fall 2025 109

GLSL Arrays

• working with GLSL arrays
– in GLSL

• syntax is like Java

CPSC 424: Computer Graphics • Fall 2025 110

GLSL Arrays

• working with GLSL arrays
– in javascript – each element of the array is a separate parameter

• need location variable (+ buffer for attributes)
– convenient to use a javascript array to group, rather than multiple separate

variables

–
–
–

• need to set

CPSC 424: Computer Graphics • Fall 2025 111

Positioning Lights

• common usage patterns

– fixed light with respect to the viewer
• e.g. viewer light, overhead light – the scene is always illuminated from the

same direction regardless of the camera’s orientation
• light position is defined in EC

– fixed light with respect to the world
• e.g. street light – the light has a location in the world but appears in

different places in the rendered scene depending on the camera’s position
and orientation

• light position is defined in WC

– fixed light with respect to an object
• e.g. car headlights – the light has a location relative to an object but that

object can be in different places in the world
• light position is defined in OC

CPSC 424: Computer Graphics • Fall 2025 113

Positioning Lights in OpenGL

• light positions are transformed by the modelview matrix in
effect when the position is set using glLightfv

• usage patterns
– fixed light with respect to the viewer – light position in EC

• set light position while modelview is identity (before any viewing or
modeling transforms)

– fixed light with respect to the world – light position in WC
• set light position after the viewing transform but before any modeling

transforms

– fixed light with respect to an object – light position in OC
• set light position with the same modeling transform as the object

/ syntax concepts are
 1.0, OpenGL not WebGL

CPSC 424: Computer Graphics • Fall 2025 114

Positioning Lights in WebGL

• lighting computations are commonly done in EC
• as implemented, must pass EC light coordinates to

shaders
– modelview passed to shaders is the one associated with the

current primitive, not the light(s)

• JavaScript program must apply appropriate transform to
lights before passing to shaders

– lights fixed relative to an object (OC)
• transformation is modelview (for light's modeling transform)

– lights fixed relative to the world (WC)
• transformation is viewing transform (modeling transform is identity)

– lights fixed relative to the viewer (EC)
• transformation is identity

CPSC 424: Computer Graphics • Fall 2025 115

Caveat

• all lights in effect when drawing
a primitive must be set before
the gl.drawArrays or
gl.drawElements call
– typically means that lights must be

set before any geometry is drawn

• for lights fixed relative to the viewer (EC) –
matrix is identity

• for lights fixed relative to the world (WC) –
matrix is the viewing transform

– use current modelview since no additional
transformations have been applied

• for lights fixed relative to an object (OC) –
matrix is the light’s modeling transform

– save current modelview
– duplicate the modeling transforms to position the

object and the light relative to the object
– transform the OC light position using the current

modelview

– restore the previous modelview

define all lights (i.e. set shader
parameters for lights) here

