

CPSC 424: Computer Graphics • Fall 2025 15

Image Textures

• an image texture is specified as
an image (or equivalent)

• texture coordinates specify how
to map the texture onto the
surface
– associated with each vertex of the

primitive
– may be specified as part of the

model or generated

• sample the texture at the point
corresponding to each surface
pixel to determine the pixel’s
color

CPSC 424: Computer Graphics • Fall 2025 16

Textures in WebGL – Steps Overview

• setting up the texture
– create the texture object
– configure texture object

• bind texture object
• load or generate the texture image
• set parameters, generate mipmaps

• applying the texture
– associate texture object with a texture unit
– pass information to shaders

• tell the fragment shader which texture unit(s) to use

• defining shaders
– fragment shader – determine color of pixel
– vertex shader – pass that which is interpolated rather than computed

per-pixel to the fragment shader

parameters: minification filter,
magnification filter, wrapping function

CPSC 424: Computer Graphics • Fall 2025 17

Textures in WebGL – Steps Recap

• setting up the texture
– create the texture object

– configure texture object
• bind texture object so subsequent operations apply to it

• load or generate the texture image
– WebGL expects data bottom up, but web images are top down – must specify

that images should be flipped when loaded

• set parameters, generate mipmaps

– property: gl.TEXTURE_MAG_FILTER, gl.TEXTURE_MIN_FILTER,
gl.TEXTURE_WRAP_S, gl.TEXTURE_WRAP_T

– requires texture dimensions to be power of two

textureObj = gl.createTexture();

 gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL,1);

gl.texImage2D(gl.TEXTURE_2D,0,gl.RGBA,gl.RGBA,gl.UNSIGNED_BYTE,image);
gl.texImage2D(gl.TEXTURE_2D,0,gl.RGBA,width,height,border,gl.RGBA,
 gl.UNSIGNED_BYTE,dataArray);

gl.bindTexture(gl.TEXTURE_2D,textureObj);

gl.texParameter(gl.TEXTURE_2D,property,value);

gl.generateMipmap(gl.TEXTURE_2D);

CPSC 424: Computer Graphics • Fall 2025 18

Textures in WebGL – Steps Recap

• applying the texture
– associate texture object with a texture unit

• activate texture unit

• bind texture object to currently active texture unit

gl.activeTexture(gl.TEXTUREi);

gl.bindTexture(gl.TEXTURE_2D,textureObj);

CPSC 424: Computer Graphics • Fall 2025 19

Textures in WebGL – Steps

• defining shaders
– fragment shader – determine color of pixel

• obtain texture coordinates for pixel – passed from vertex shader via varying
variable or computed directly

• (optionally) apply texture transformation or other manipulation of texture
coordinates

• sample texture to get color
• (optionally) blend texture color with other colors (e.g. from lighting)

– vertex shader – pass that which is interpolated rather than computed
per-pixel to the fragment shader

• for texture coordinates supplied as part of the model geometry –
– (optionally) apply texture transformation or other manipulation of texture

coordinates
– pass texture coordinates to fragment shader via varying variable

CPSC 424: Computer Graphics • Fall 2025 20

Textures in Shaders

• fragment shader
– texture unit(s) to use are

specified with uniform sampler
variable(s)

• type sampler2D
• values are 0, 1, 2, …,
gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1

– obtain texture coordinates for pixel
• compute directly and (optionally) apply texture transform or other manipulations, or

get from vertex shader via a varying variable
– sample texture to get color – texture2D function
– (optionally) combine texture color with something else
–

• vertex shader
– for texture coordinates supplied as

part of the model geometry –
• texture coordinates are an attribute of

type vec2
• (optionally) apply texture transformation to

texture coordinates
• pass texture coordinates to fragment shader (varying variable)

set values for shader attributes
and uniforms in JavaScript

passes values that are
interpolated rather than computed
per-pixel to the fragment shader

utilizes texture
for pixel color

CPSC 424: Computer Graphics • Fall 2025 22

Applying the Texture
•

• set the values for shader attributes and uniforms in
JavaScript

texunit is an integer 0, 1, 2, …
specifying which texture unit

CPSC 424: Computer Graphics • Fall 2025 23

Usage Patterns

• usage patterns for working with multiple textures
– single texture object, single texture unit

• to use a new texture, load a new image into the texture object
• inefficient

– different texture objects for each texture, single texture unit
• to use a new texture, use gl.bindTexture to bind a new texture object to

the active texture unit

– different texture objects for each texture, different texture units
• bind textures to different texture units
• to use a new texture, pass a different value for the sampler variable to the

fragment shader
• necessary if more than one texture is to be applied to the same primitive

(use multiple sampler variables)

CPSC 424: Computer Graphics • Fall 2025 24 CPSC 424: Computer Graphics • Fall 2025 25

Textures + Lighting

• using only the texture color
ignores the lighting in the
scene

• other options
– mix – combine the texture color and the lighting equation color

• can use GLSL mix function

– replace – use the texture color in place of the object's ambient
and diffuse colors in the lighting equation

• appropriate for full-color textures

– modulate – texture color multiplies the ambient and diffuse terms
• appropriate for grayscale textures

– replace, modulate require lighting to be done in the fragment
shader – texture color is a per-pixel operation

I=maIa+ ∑
all lights

[md I smax (0,(N⋅L))+ms Ismax (0, (R⋅V))mh]

mix(x,y,t) = x*(1-t) + y*t

CPSC 424: Computer Graphics • Fall 2025 26

Texture Transforms

• OpenGL supports a current texture transform along with
modelview and projection matrices

• with WebGL –
– maintain a texture transform (JavaScript variable)

• mat3 because texture coordinates are 2D
– for texture coordinates defined as part of the model geometry –

• pass texture transform to vertex shader just like modelview and projection
matrices

• vertex shader applies transform to the texture coordinates it is provided
 vec3 texcoords = u_textureTransform*vec3(a_texcoords,1.0);
 v_texcoords = texcoords.xy;

– a_texcoords, u_textureTransform are shader parameters
– v_texcoords is a varying parameter

– for generated texture coordinates –
• pass texture transform to fragment shader
• fragment shader computes texture coordinates and applies transform

CPSC 424: Computer Graphics • Fall 2025 27

Texture Transforms

• the effect on the appearance of the texture is the inverse
of the transformations specified
– e.g. scale(2,2) makes it appear as if the texture has shrunk by

a factor of 2

scale factor 1
texture coordinates for the front face
of the cube are (0,0), (1,0), (1,1), (0,1)

scale factor 2
texture coordinates for the front face of the cube
are transformed to (0,0), (2,0), (2,2), (0,2)

CPSC 424: Computer Graphics • Fall 2025 28 CPSC 424: Computer Graphics • Fall 2025 29

Generating Texture Coordinates

• texture coordinates may not be supplied as part of the
object

• complex objects can be difficult to determine texture
coordinates for

• there are many different ways to generate texture
coordinates
– some work better than others for certain kinds of shapes

• texture coordinates are generally computed in OC so
texture sticks with the object

• can be computed in the vertex shader if linear
interpolation is appropriate, otherwise compute in
fragment shader

CPSC 424: Computer Graphics • Fall 2025 30

Generating Texture Coordinates

Strategies –

• projection
• shrinkwrapping
• intermediate (map) shapes

CPSC 424: Computer Graphics • Fall 2025 31

Projection – Plane

• projection onto a plane
– take xy, yz, or xz part of OC point

– suitable for faces more or less parallel to projection plane
– very poor for faces perpendicular to projection plane

http://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe/

CPSC 424: Computer Graphics • Fall 2025 32

Projection – Cube

• cubical projection
– use plane perpendicular to the component

of the surface normal with the greatest
magnitude (i.e. axis-aligned plane closest to
parallel to the surface)

• flip components when projecting along a negative
axis to avoid having mirror-reversed texture on
surface

• can be done in the vertex shader for flat shading
(polygon normals) but should be done in the
fragment shader for smooth shading (vertex
normals)

• good for cubes
• often good for

other shapes,
but with seams

CPSC 424: Computer Graphics • Fall 2025 33

CPSC 424: Computer Graphics • Fall 2025 34

Shrinkwrapping

• directly map the surface to the
image texture

• suitable for simple shapes, such as
– cube
– sphere
– cylinder
– infinite cylinder

https://www.bigshrink.com/bulk-shrink-wrap-32-100-7 CPSC 424: Computer Graphics • Fall 2025 35

Shrinkwrapping Cubes

• apply image to each face
using plane projection

• use a cubemap

https://i.all3dp.com/workers/images/fit=scale-down,w=1200,h=630,gravity=0.5x0.5,format=jpeg/wp-content/
uploads/2023/03/20181630/cube-mesh-with-medieval-wooden-texture-aftab-ali-via-all3dp-230123.jpg
https://en.wikipedia.org/wiki/Cube_mapping
https://scalibq.wordpress.com/2013/06/23/cubemaps/

CPSC 424: Computer Graphics • Fall 2025 36

Shrinkwrapping Spheres

• convert (x,y,z) to (long,lat)
• map long  s, lat  t

x = r cos(lat) sin(long)
y = r sin(lat)
z = r cos(lat) cos(long) longitude

(s)latitude
(t)

latitude is between –90 and 90
longitude is between –180 and 180

https://i.sstatic.net/oX2gX.jpg

