Lab 3

* mat4.frustum vs mat4.perspective
both specify a perspective projection — the difference is just

convenience

* it can be easier to think in terms of the view window rather than a field of

view angle

mat4.frustum(A, left, right,bottom, top,near, far)

mat4.perspective(A, fieldOfView,aspect, near, far)
= - figld0fViewin radians

- fieldOfView is in radians, not degrees

CPSC 424: Computer Graphics « Fall 2025

Lab 3

N

* repeated vertices in an indexed face set representation

appropriate for polyhedron to be able to use polygon normals for
flat shading, but otherwise the point is not to repeat vertices
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* drawing

for wireframe — need to draw one LINE_LOOP per face
« LINE_LOORP treats all of the vertices as a single polygon

to ensure that wireframe is visible over solid polygons, need to
draw the lines offset a bit from the polygons

this offsets the filled
polygons; you can
instead offset the
wireframe edges

- problem: pixels along polygon edges are at the same
depth whether drawing faces (filled polygons) or edges
wireframe)

9l.polygon0fset(1.6, 1.0);
gl.enable(gl.POLYGON OFFSET FILL); o
the solution is to tell QpenGL to
draw the filled polygons slightly
gl.disable(gl.POLYGON_OFFSET FILL); offset in depth from the wireframe

/1 draw the edges

/1 draw the faces

(factor,units)
— factor allows for different offsets depending on the angle of the
polygon into the screen — 1 is generally fine
— units specifies the size of the offset
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 specifying geometry

when sending values to the shader, you need a 1D array
(Float32Array or similar) — but you don't have to start with that

an array-of-arrays is et cores =
* (2, -1, 21, 2, -1, -21, (2, 1, -2], (2, 1, 2], [1.5, 1.5, @],
Convenlent [-1.5, 1.5, o], [-2, -1, 2], [-2, 1, 2], [-2, 1, -2], [-2, -1, -2]];
* can then programmatically 3113, 2, 41, 17, 3, 4, 51, (2, 8, 5, 41, [5. 8,
bu”d the Float32Array 6], [e, 6, 9, 1], [2, 1, 9, 8], [6, 7, 8, 9]];
ql.bindBuffer (gl.ARRAY BUFFER, a_coords bufifh); // bind VBO (for storing array values)
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(coords.flat()), gl.STREAM DRAW); // copy data from js var to VBO
gl.enablevertexAttribArray(a coords); // specify which attribute the VBO contains data for

house

models-IFS.js and teapot-model-IFS.js, the house
on page 5 of Monday's "specifying geometry"
slides, and one object of your own where the
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