Lab 3

* mat4.frustum vs mat4.perspective
both specify a perspective projection — the difference is just

convenience

* it can be easier to think in terms of the view window rather than a field of

view angle

mat4.frustum(A, left, right,bottom, top,near, far)

mat4.perspective(A, fieldOfView,aspect, near, far)
= - figld0fViewin radians

- fieldOfView is in radians, not degrees

CPSC 424: Computer Graphics « Fall 2025

Lab 3

N

* repeated vertices in an indexed face set representation

appropriate for polyhedron to be able to use polygon normals for
flat shading, but otherwise the point is not to repeat vertices

CPSC 424: Computer Graphics « Fall 2025

Lab 3

* drawing

for wireframe — need to draw one LINE_LOOP per face
« LINE_LOORP treats all of the vertices as a single polygon

to ensure that wireframe is visible over solid polygons, need to
draw the lines offset a bit from the polygons

this offsets the filled
polygons; you can
instead offset the
wireframe edges

- problem: pixels along polygon edges are at the same
depth whether drawing faces (filled polygons) or edges
wireframe)

9l.polygon0fset(1.6, 1.0);
gl.enable(gl.POLYGON OFFSET FILL); o
the solution is to tell QpenGL to
draw the filled polygons slightly
gl.disable(gl.POLYGON_OFFSET FILL); offset in depth from the wireframe

/1 draw the edges

/1 draw the faces

(factor,units)
— factor allows for different offsets depending on the angle of the
polygon into the screen — 1 is generally fine
— units specifies the size of the offset

CPSC 424: Computer Graphics » Fall 2025

Lab 3

 specifying geometry

when sending values to the shader, you need a 1D array
(Float32Array or similar) — but you don't have to start with that

an array-of-arrays is et cores =
* (2, -1, 21, 2, -1, -21, (2, 1, -2], (2, 1, 2], [1.5, 1.5, @],
Convenlent [-1.5, 1.5, o], [-2, -1, 2], [-2, 1, 2], [-2, 1, -2], [-2, -1, -2]];
* can then programmatically 3113, 2, 41, 17, 3, 4, 51, (2, 8, 5, 41, [5. 8,
bu”d the Float32Array 6], [e, 6, 9, 1], [2, 1, 9, 8], [6, 7, 8, 9]];
ql.bindBuffer (gl.ARRAY BUFFER, a_coords bufifh); // bind VBO (for storing array values)
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(coords.flat()), gl.STREAM DRAW); // copy data from js var to VBO
gl.enablevertexAttribArray(a coords); // specify which attribute the VBO contains data for

house

models-IFS.js and teapot-model-IFS.js, the house
on page 5 of Monday's "specifying geometry"
slides, and one object of your own where the

CPSC 424: Computer Graphics + Fall 2025




