

CPSC 424: Computer Graphics • Fall 2025 61

Bump Mapping

the idea: on a rough or patterned surface, surface normals
aren’t all parallel

smooth surface rough surface

• it is too expensive to actually model a complex surface
with polygons, but the effect can be approximated by
modeling the smooth surface but perturbing the
normals in lighting calculations

• can use textures (as a bump map) to define how to
perturb the normals

patterned surface

CPSC 424: Computer Graphics • Fall 2025 62

Examples

metal bump map
with metal texture

metal bump map only

metal texture only

CPSC 424: Computer Graphics • Fall 2025 63

Examples

water texture, stucco bump map stucco texture & bump map

stucco texture onlywater texture & bump map

CPSC 424: Computer Graphics • Fall 2025 65

Bump Mapping

• define texture coordinates
(u,v) for each point P on the
surface

• define bump map B(u,v)
(maps points to displacements)

• at each point P on the
surface, displace by B(u,v)
along the normal at P
 P’ = P + B(u,v) N

• compute normal N' for P'
• use N’ in lighting and other

computations

idea –
• perturb surface point (the bump)

• compute (an approximate) normal
for the perturbed point

CPSC 424: Computer Graphics • Fall 2025 66

Defining Texture Coordinates

• can use generation techniques previously discussed

• for shapes where there is a convenient parametric
representation, use the shrinkwrap approach

– for surface point (x,y,z)
• solve for (r,lat,long)
• map long → u, lat → v

x = r cos(lat) sin(long)
y = r sin(lat)
z = r cos(lat) cos(long)

longitude
(s)latitude

(t)

CPSC 424: Computer Graphics • Fall 2025 67

Defining the Bump Map

• to reduce computations, obtain
bump values via table lookup
instead of evaluating a function

• B(u,v) is typically defined by 2D
height field obtained from a
grayscale bitmap image
values 0 to 255  map to

range [-128,128]

CPSC 424: Computer Graphics • Fall 2025 68

Computing Perturbed Normals

• displaced point

P’ = P + B(u,v) N

• approximation to displaced normal
[Blinn 1978]

N’ = N + Bu (N  Pt) - Bv (N  Ps)
(normalize before use)

– Ps and Pt are the surface tangents along the
parameterization axes

• also known as tangent (Ps) and binormal (Pt)
– Bu and Bv are the partial derivatives of B(u,v)

with respect to u and v, respectively

s

t

Ps

Pt

longitude
(s)latitude

(t)

CPSC 424: Computer Graphics • Fall 2025 69

Computing the Tangent and Binormal

• book’s discussion assumes normal
and tangent (Ps) are defined as part
of the surface
– suitable when you don’t have parametric

equations defining the surface (e.g. poly
mesh)

• compute binormal (P
t
) as normal  tangent

CPSC 424: Computer Graphics • Fall 2025 70

Computing the Tangent and Binormal

For surfaces defined by parametric equations –

• Ps is partial derivative of P with respect to s

• Pt is partial derivative of P with respect to t

• surface normal at P is the cross product Ps  Pt

s

t

Ps

Pt

s

t

Ps

Pt

CPSC 424: Computer Graphics • Fall 2025 71

• parametric definition

• partial derivatives

• N = Ps  Pt

– which points in the same direction as (x,y,z)

Sphere Example

x’ = r cos(lat) cos(long)
y’ = 0
z’ = -r cos(lat) sin(long)

x’ = -r sin(lat) sin(long)
y’ = r cos(lat)
z’ = -r sin(lat) cos(long)

Ps Pt

x = r cos(lat) sin(long)
y = r sin(lat)
z = r cos(lat) cos(long)

Ps×P t=[r2 cos2 lat sin long 
r 2cos lat sin lat cos2longr 2cos lat sin lat sin2 long 

r2 cos2latcoslong]=r coslat [r cos lat sin long r sin lat 
r coslat coslong ]

longitude
(s)latitude

(t)

CPSC 424: Computer Graphics • Fall 2025 72

Computing Bu and Bv

• approximate derivatives Bu and Bv
by looking at differences between
neighboring entries in bitmap

• obtain Bu by convolving the bump
map image with

• obtain Bv by convolving the bump
map image with

















111

000

-1-1-1

















-101

-101

-101

scale result by range of values in bitmap

CPSC 424: Computer Graphics • Fall 2025 73

Convolution

https://mriquestions.com/what-is-convolution.html

CPSC 424: Computer Graphics • Fall 2025 74

Computing Bu and Bv

• the book uses a simpler convolution

• obtain Bu by convolving the bump map
image with

• obtain Bv by convolving the bump map
image with












0
1
-1



 -110

scale result by range of
values in bitmap
if this is a constant range,
can scale by desired strength

one pixel up/right

.r = red component
of color (same as g, b
for grayscale image)

tangent and binormal are (N  Pt)
and (N  Ps), respectively

note: normal is still in OC – must convert to EC
before using in lighting equation

note: this is opposite what is
in the book – this version
means that white in the
bump map corresponds to a
larger distortion outwards

CPSC 424: Computer Graphics • Fall 2025 75

Implementing Bump Mapping

• to compute the perturbed normal N' for OC point (x,y,z)
• map OC (x,y,z) to TC (u,v)
• scale TC (u,v) to BC (u’,v’) – i.e. apply texture transform
• compute Bu and Bv for (u’,v’)

• compute tangent N  Pt and binormal N  Ps if needed

• compute N’ = N + Bu tangent - Bv binormal

• use N' instead of regular surface normal for illumination
and other lighting-related calculations

CPSC 424: Computer Graphics • Fall 2025 76

Examples

water texture, stucco bump map stucco texture & bump map

stucco texture onlywater texture & bump map

