Bump Mapping Examples

the idea: on a rough or patterned surface, surface normals
aren’t all parallel

metal texture only
smooth surface rough surface patterned surface

TR

it is too expensive to actually model a complex surface
with polygons, but the effect can be approximated by

- . i tal b
modeling the smooth surface but perturbing the 2 . VUE ?netuaTtpe:;SEe
normals in lighting calculations s
can use textures (as a bump map) to define how to metal bump map only
perturb the normals —

CPSC¢ 61 CPSC 424: Computer Graphics + Fall 2025 62

idea —
perturb surface point (the bump)

compute (an approximate) normal
for the perturbed point

define texture coordinates &
(u,v) for each point P on the M g Surtace
surface

\: 2 define bump map B(u,v) —_ | i
L./ (maps points to displacements) W
water texture & bump map stucco texture only

at each point P on the

surface, displace by B(u,v) Myt

along the normal at P W o
P'=P+B(uyv)N

compute normal N' for P' *W"ﬁlm,m

use N’ in lighting and other R

water texture, stucco bump map stucco texture & bump map computations

Examples Bump Mapping

IO D LA

CPSC 424: Computer Graphics « Fall 2025 63

CPSC 424: Computer Graphics + Fall 2025 65

Defining Texture Coordinates

can use generation techniques previously discussed

for shapes where there is a convenient parametric
representation, use the shrinkwrap approach

x = r cos(lat) sin(long)
y = rsin(lat) I A

z = r cos(lat) cos(long) latitude
®

®)

for surface point (x,y,z)
solve for (r,lat,long)
map long - u, lat » v

CPSC 424: Computer Graphics « Fall 2025

Computing Perturbed Normals

displaced point
P'=P+B(uv)N

approximation to displaced normal I %e
[Blinn 1978] latitude (s)

®
N'=N+B,(NXP)-B,(NxP,)

(normalize before use)

P, and P, are the surface tangents along the
parameterization axes

also known as tangent (P,) and binormal (P,

B, and B, are the partial derivatives of B(u,v)
with respect to u and v, respectively

tangent

binormal

CPSC 424: Computer Graphics « Fall 2025

Defining the Bump Map

to reduce computations, obtain
bump values via table lookup
instead of evaluating a function

B(u,v) is typically defined by 2D
height field obtained from a
grayscale bitmap image

CPSC 424: Computer Graphics » Fall 2025

Computing the Tangent and Binormal

book’s discussion assumes normal
and tangent (P,) are defined as part
of the surface

suitable when you don't have parametric

equations defining the surface (e.g. poly
mesh)

normal

binormal

tangent

compute binormal (P,) as normal x tangent

vec3 normal = normalize({ v_normal };
vec3 tangent = normalize(v_tangent);
vec3 binormal = cross(normal,tangent);

CPSC 424: Computer Graphics + Fall 2025

Computing the Tangent and Binormal

For surfaces defined by parametric equations —

P, is partial derivative of P with respectto s
P, is partial derivative of P with respect to t
surface normal at P is the cross product P, X P,

CPSC 424: Computer Graphics « Fall 2025 70

Computing B, and B,

approximate derivatives B, and B,
by looking at differences between
neighboring entries in bitmap

obtain B, by convolving the bump
map image with .

obtain B, by convolving the bump
map image with .

scale result by range of values in bitmap

CPSC 424: Computer Graphics « Fall 2025 72

Sphere Example

parametric definition

x = r cos(lat) sin(long) I Q
y = r sin(lat) itude

latitude (s)

z = r cos(lat) cos(long) o

partial derivatives

x" = r cos(lat) cos(long) x" = -r sin(lat) sin(long)
P,y =0 P.< y’ = r cos(lat)
z' = -r cos(lat) sin(long) z' = -r sin(lat) cos(long)
N=P, X P,

r* cos’ (lat)sin (long) rcos(lat)sin(long)

P XP =|r?cos(lat)sin (lat)cos’ (long)+r’cos(lat)sin (lat)sin’ (long)|= I cos(lat) rsin(lat)
r*cos’(lat) cos(long) rcos(lat) cos(long)

which points in the same direction as (x,y,z)

Convolution

CPSC 424: Computer Graphics + Fall 2025

@x0)
Center alement of the kernel is placed over the :g : g;
source pixel. The source pixel is then replaced @x0
with a weighted sum of itself and nearby pixels. 0% 1;
0x1)
. {0 x0)
Source pixel 0x1)
+ (-4%2)
-8
Convolution kernel B
(emboss) o)
Mew pixel value (destination pixel) g~ Lol

note: this is opposite what is

Computlng Bu and BV in the book — this version

means that white in the

bump map corresponds to a
larger distortion outwards

the book uses a simpler convolution

obtain B, by convolving the bump map
image with -

obtain B, by convolving the bump map
image with >

float bm@ = texture2D(u bumpmap, v texCoords }.r;

float bmUp = texture2D(u bumpmap, v texCoords + vec2(0.@, 1.0/u_bumpmapSize.y)).r;
float bmRight = texture2D(u_bumpmap, v_texCoords + vec2(1.6/u_bumpmapSize.x, ©.8)).r;
vec3 bumpVector = (bm@-bmRight)*tangent + (bm@-bmUp)*binormali

normal += u_bumpmapStrength*bumpVector; one pixel up/right

A

scale result by range of
values in bitmap

if this is a constant range, note: normal is still in OC — must convert to EC %
7

.r = red component
tangent and binormal are (N X P) of color (same as g, b

and (N x P,), respectively for grayscale image)

can scale by desired strength before using in lighting equation

Examples

RIS LA

water texture & bump map stucco texture only

water texture, stucco bump map

CPSC 424: Computer Graphics « Fall 2025 7

Implementing Bump Mapping

to compute the perturbed normal N' for OC point (x,y,z)

map OC (x,y,z) to TC (u,v)

scale TC (u,v) to BC (u’,v’) —i.e. apply texture transform
compute B, and B, for (u',v’)

compute tangent N X P, and binormal N X P, if needed
compute N’ =N + B, tangent - B, binormal

use N'instead of regular surface normal for illumination
and other lighting-related calculations

CPSC 424: Computer Graphics + Fall 2025 75

