

CPSC 424: Computer Graphics • Fall 2025 80

Handling Reflections

• so far we have no way to render
reflective surfaces

CPSC 424: Computer Graphics • Fall 2025 81

Handling Reflections

• matte surfaces reflect light equally
in all directions
– diffuse term models direct

illumination
– ambient term models indirect

illumination
• the color we see for a point is a blend of

light rays coming from many other points
in the scene

•

•

•

• shiny surfaces are highly
directional in how they reflect light
– specular term models direct

illumination
– nothing models indirect illumination

object A

object B

P

object A

object B

P

CPSC 424: Computer Graphics • Fall 2025 82

Environment Mapping

• reflections can be computed
through raytracing
– this is expensive

• reflections can be faked
by applying the right
texture to the surface
– this is environment

mapping

object A

object B

P

http://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe/ CPSC 424: Computer Graphics • Fall 2025 83

Implementing Environment Mapping

• concepts
– a skybox is a large cube surrounding the

entire scene (including the camera)
– a cubemap texture applied to the skybox

represents the rest of the world outside of
what is being modeled

• rendering
– render the skybox with the cubemap texture
– render the object(s) using the skybox as a

map shape
• use the reflection vector to map object point →

map shape
• use the texture color alone for perfectly reflective

objects or combine with lighting equation color
for shiny but not mirrored surfaces

– “combine” = add or mix (rather than replace or
modulate) – reflected light is the sum of
contributions from each source

https://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter07.html
https://commons.wikimedia.org/wiki/File:Cube_mapped_reflection_example.jpg

CPSC 424: Computer Graphics • Fall 2025 84

Working With Cubemap Textures

• WebGL has built-in support for cubemaps
• overall process is similar to working with 2D image

textures
– in javascript –

• set up texture object
• pass texture to use to the fragment shader

– in fragment shader –
• receive or compute texture coordinates
• get the texture's color at that position
• use texture color to compute pixel color

CPSC 424: Computer Graphics • Fall 2025 85

Working With Cubemap Textures
create a texture object

set the current texture
object, being used as a
cubemap rather than a
2D texture

load the image –
done 6 times, one for
each face of the cube

generate mipmaps for
the whole cubemap
once image loading is
complete (onload is a
callback which runs each
time load completes)

textureObject is the
global JS variable, set
once the initialization of
the whole texture object
is complete

don’t flip for cubemap

CLAMP_TO_EDGE helps
avoid seams on edges

CPSC 424: Computer Graphics • Fall 2025 86 CPSC 424: Computer Graphics • Fall 2025 87

Working With Cubemap Textures

• pass texture information to shaders
– shader has parameter of type samplerCube

– associate texture object with a particular texture unit
– set shader parameter to reference the texture unit

cubemap_loc

uniform samplerCube cubemap;

CPSC 424: Computer Graphics • Fall 2025 88

precision mediump float;
varying vec3 v_objCoords;
uniform samplerCube cubemap;

void main () {
 gl_FragColor =
 textureCube(cubemap,v_objCoords);
}

Working With Cubemap Textures

• fragment shader
– sample texture to get color
–

– may be passed or compute texture
coordinates

– may use texture color in lighting
equation or in some other way cubemap textures are

sampled using 3D vector
from the origin to the point

CPSC 424: Computer Graphics • Fall 2025 89

Working With Cubemap Textures

• notes
– two texture objects can be bound to the same texture unit at the

same time, as long as one is a 2D texture and one is a cubemap
texture

– it is common to load cubemap images from a file, but the data
can be generated by other means, just like for 2D textures

– cubemap images must all be the same size, square, and a
power-of-two size

– recommended to set texture wrap mode to CLAMP_TO_EDGE to
avoid chance of visible seams between cube faces

