

CPSC 424: Computer Graphics • Fall 2025 110

Render to Texture

The idea –
• create a texture object, but without specifying

image data
• create a framebuffer to render to
• attach the texture to the framebuffer as a

color buffer
• create an additional renderbuffer for use as a

depth buffer
• attach that renderbuffer to the framebuffer as

a depth buffer
• draw to the framebuffer
• draw the scene using the generated texture

done in
initGL

done in
draw

if depth
buffer is
needed

CPSC 424: Computer Graphics • Fall 2025 111

Render to Texture

• draw to the framebuffer

– rendering a 2D scene

– for rendering a 3D scene, also clear
gl.DEPTH_BUFFER_BIT and do not disable
gl.DEPTH_TEST

make the texture
framebuffer the
current one
(framebuffer is the
javascript variable for
this framebuffer)

if using different
shader programs for
rendering texture vs
rest of scene

set background
color as desired

depth buffer not
used for 2D drawing

viewport is not set
automatically for
other framebuffers
(size must match size
specified in
gl.texImage2D)

CPSC 424: Computer Graphics • Fall 2025 112

Render to Texture

• draw the scene using the generated
texture

set current
framebuffer to the
default framebuffer
(for drawing to the
display)

if using different
shader programs for
rendering texture vs
rest of scene

set background
color as desired

if depth test was
previously disabled
(for rendering 2D
scene)

must restore the
viewport manually
canvas is the
javascript variable
referring to the canvas
on the web page

(use the texture object as usual)

CPSC 424: Computer Graphics • Fall 2025 113

Dynamic Cubemap Textures

Procedure –

• create a cubemap texture for the environment map
– create a cubemap texture object, but without specifying image

data
– create a framebuffer to render to
– attach the texture to the framebuffer as a color buffer
– create an additional renderbuffer for use as a depth buffer
– attach that renderbuffer to the framebuffer as a depth buffer

• draw to the framebuffer 6 times, once for each face of the
cubemap
– each time, the full scene (skybox + objects) is drawn – from a

different viewing angle

• draw scene (skybox + objects) using the generated
cubemap as the skybox texture

CPSC 424: Computer Graphics • Fall 2025 114

Dynamic Cubemap Textures

• create a cubemap texture object, but without specifying
image data

CPSC 424: Computer Graphics • Fall 2025 115

Dynamic Cubemap Textures

• create a framebuffer to render to

• attach the texture to the framebuffer as a color buffer
– repeat the following for each target

• create an additional renderbuffer for use as a depth buffer
– can use the same renderbuffer to render all 6 images

• attach that renderbuffer to the framebuffer as a depth
buffer

CPSC 424: Computer Graphics • Fall 2025 116

Dynamic Cubemap Textures

• draw to the framebuffer
– idea

• place the camera at the center of the reflective object
• point the camera towards each of the six sides of the skybox

– “camera” includes both projection and viewing transforms
• for a cubemap, need a square view window and a 90-degree field of view

• viewing transforms point towards each of the cube faces

cubemap textures are from the outside of
the cube, but the camera sees the inside
of the cube
 – need to flip horizontally
 – may also need to flip vertically to deal
with WebGL's convention for the image
data starting with the bottom row

.perspective(

CPSC 424: Computer Graphics • Fall 2025 117

draws skybox and non-
reflective objects

horizontal and vertical flip

flip is already incorporated
in camera rotation

CPSC 424: Computer Graphics • Fall 2025 118 CPSC 424: Computer Graphics • Fall 2025 119

Other Aspects of Framebuffers

• blending refers to how color from fragment shader is
combined with the current color in the color buffer
– default is replace (if at lesser depth)

– gl.enable(gl.BLEND) enables blending
– gl.blendFunc sets how to blend

• gl.blendFunc(gl.SRC_ALPHA,gl.ONE_MINUS_SRC_ALPHA)
– alpha blending: src*src.a + dest*(1-src.a)

• gl.blendFunc(gl.ONE,gl.ZERO)
– default: src*1 + dest*0

– gl.blendFuncSeparate allows different blend functions for
RGB and alpha components

• gl.blendFuncSeparate(gl.SRC_ALPHA,
 gl.ONE_MINUS_SRC_ALPHA,
 gl.ZERO,gl.ONE)

– use alpha blending for RGB components but use the alpha already in the
color buffer – keeps the canvas itself opaque

CPSC 424: Computer Graphics • Fall 2025 120

Other Aspects of Framebuffers

• control writing to buffers
– depth buffer – gl.depthMask(mask)

• mask is boolean – true to write
• note that gl.enable(gl.DEPTH_TEST) controls usage of the depth

buffer during rendering

– color buffer –
gl.colorMask(redmask,greenmask,bluemask,alphamask)

• mask values are booleans – true to write

CPSC 424: Computer Graphics • Fall 2025 121

Other Aspects of Framebuffers

• applications
– rendering translucent objects

• draw opaque objects with depth mask on
• draw translucent objects with depth mask off (but use of depth buffer on)

and alpha blending on

– anaglyph stereo
• draw left and right eye images with red channel for one and green/blue

channels for the other
• clear depth buffer but not color buffer before drawing second image

CPSC 424: Computer Graphics • Fall 2025 122 CPSC 424: Computer Graphics • Fall 2025 123

Refraction

• refraction refers to the bending of light at boundary
between different materials due to light traveling at
different speeds in different materials

– from faster to slower medium → bends towards normal
– from slower to faster medium → bends away from normal

http://www.physics.brown.edu/Studies/Demo/optics/demo/6a4210.htm

CPSC 424: Computer Graphics • Fall 2025 124

Refraction

http://www.physics.brown.edu/Studies/Demo/optics/demo/6a4220.htm CPSC 424: Computer Graphics • Fall 2025 125

Refraction via Environment Mapping

• use a skybox as with reflection
– use the refraction ray to sample the cubemap rather than the

reflection ray

CPSC 424: Computer Graphics • Fall 2025 126

Computing the Refraction Ray

• angle of refraction r depends on
• index of refraction of each material

• ci for the incident material

• cr for the refracting material

• angle of incidence i

i

r

ci

cr

N

i
r

i
r


c

c
 sinsin 

(Snell’s Law)

incident material

refracting material

incoming ray

refraction ray

CPSC 424: Computer Graphics • Fall 2025 127

Computing the Refraction Ray

• GLSL has a function refract which returns the refraction
ray

 refract(I,N,iorratio)
– I is the incident vector (normalized)

• from the camera to the surface point – in EC, this is just the EC surface
point (normalized)

– N is the outward surface normal (normalized)
– iorratio is the ratio ci/cr

i

r

ci

cr

N incident material

refracting material

incoming ray

refraction ray

CPSC 424: Computer Graphics • Fall 2025 128

Index of Refraction n

common values

higher value means that light travels more slowly

2.42diamond1.33water

1.77sapphire1.31ice

1.65flint glass1.00029air

1.52crown glass1.000vacuum

CPSC 424: Computer Graphics • Fall 2025 129

Effect of the Index of Refraction

c = 1.31 (ice)

c = 1.01

c = 1.52 (crown glass)

c = 2.42 (diamond)

CPSC 424: Computer Graphics • Fall 2025 130 CPSC 424: Computer Graphics • Fall 2025 131

Shadows

• shadow mapping
– look at the scene from the point of view of the light – the things

not visible are in shadow

CPSC 424: Computer Graphics • Fall 2025 132

Shadow Mapping

• method
– place camera at the light source and render

the scene
• only the depth buffer is needed (shadow map)

– gives the distance from the light to the nearest
surface to the light

• generate a separate shadow map for each light

– when rendering the scene –
• transform point into the light's coordinate system
• only include the contribution from that light if the

depth of the transformed point is no greater than the
depth in the shadow map

• shortcomings
– does not handle transparent objects
– assumes only direct illumination from light sources

CPSC 424: Computer Graphics • Fall 2025 133

CPSC 424: Computer Graphics • Fall 2025 134

Recap

• so far we've been studying realtime computer graphics
– based on the polygon pipeline which can be processed very

quickly by graphics hardware

• we've used OpenGL – low-level graphics library
– WebGL / OpenGL 2 – programmable pipeline

• user can specify shaders, giving control over notions of materials, lights,
geometry and the mechanisms for determining final geometry and
appearance

• possibilities and shortcomings of this approach
– fast
– many photorealistic effects can only be approximated (reflection,

refraction, shadows) and/or handled in limited ways

CPSC 424: Computer Graphics • Fall 2025 135

Coming Up

• after fall break
– higher level tools

• three.js (3D scene graph API)
• Blender (“3D creation suite” for modeling, rigging, animation, rendering,

and more)

• rest of the semester
– animation techniques
– advanced topics

• particle systems (modeling, animation)
• raytracing, radiosity (rendering)

