Path Tracing

Ingredients -

- rendering equation
- generalized notion of material
 - OpenGL materials only capture certain aspects of how light interacts with a surface
- path tracing algorithm
 - to approximate a solution to the rendering equation

CPSC 424: Computer Graphics • Fall 2025

https://commons.wikimedia.org/wiki/File:Path_tracing_001.png https://commons.wikimedia.org/wiki/File:Box_-_Path_Tracing_High.png

Rendering Equation

light energy leaving a point in a particular direction = light energy emitted by the point in that direction + light energy arriving at the point which is scattered in that direction

$$L_{o}(\mathbf{x}, \omega_{o}, \lambda, t) = L_{e}(\mathbf{x}, \omega_{o}, \lambda, t) + \int_{\Omega} f_{r}(\mathbf{x}, \omega_{i}, \omega_{o}, \lambda, t) L_{i}(\mathbf{x}, \omega_{i}, \lambda, t) (\omega_{i} \cdot \mathbf{n}) d\omega_{i}$$

light leaving in direction ω_o

at wavelength λ and time t

light emitted in direction ω_o

bidirectional reflectance distribution function light incident from direction ω_i at wavelength λ and time t

can be generalized to include transmission (bidirectional scattering distribution function)

introduced by Jim Kajiya in 1986

https://en.wikipedia.org/wiki/Rendering_equation

CPSC 424: Computer Graphics • Fall 2025 https://en.wikipedia.org/wiki/Jim_Kajiya#/media/File:Jim_Kajiya.jpg

Principles of Optics

- principle of global illumination
 - in a closed environment, every object must contribute illumination to every other object
- principle of equivalence
 - no distinction between light emitted from a light source and light reflected from a surface
- principle of direction
 - light scattered in a particular direction is a function of the incoming and outgoing directions

CPSC 424: Computer Graphics • Fall 2025

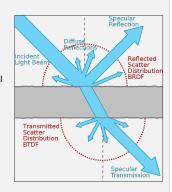
Materials

- when light hits a surface
 - some light is absorbed
 - the rest is scattered in various directions (some reflected, some transmitted)
- OpenGL materials capture certain aspects of this

diffuse color

specular color shininess

reflection coefficient


CPSC 424: Computer Graphics • Fall 2025

https://en.wikipedia.org/wiki/Bidirectional reflectance distribution function

BSDFs

Bidirectional Scattering Distribution Functions

- BSDFs generalize the notion of material
 - BSDF = bidirectional scattering distribution function
 - combination of BRDF (bidirectional reflectance distribution function) and BTDF (bidirectional transmission distribution function)
 - expresses the proportion of incoming light scattered in various directions
 - · function of incoming and outgoing directions

CPSC 424: Computer Graphics • Fall 2025

CPSC 424: Computer Graphics • Fall 2025

https://en.wikipedia.org/wiki/Path_tracing

BSDFs

Bidirectional Scattering Distribution Functions

- not limited to surfaces any point in space can be assigned a BSDF
 - for empty space, $f(\omega_i, \omega_o) = 1$ if $\omega_i = \omega_o$ = 0 otherwise
 - allows for materials like fog and clouds
 - allows for subsurface scattering in materials like marble, skin, milk

https://commons.wikimedia.org/wiki/File:Subsurface_scattering.ipg https://commons.wikimedia.org/wiki/File:Skin_Subsurface_Scattering.jpg

BSDFs

Bidirectional Scattering Distribution Functions

· OpenGL's notion of material can be expressed with **BSDFs**

= 0 otherwise

= md if $N \cdot \omega_i > 0$, $N \cdot \omega_o > 0$

 $f(\omega_i, \omega_o)$ = ms $(R \cdot V)^{mh}$ if $R \cdot V > 0$ = 0 otherwise

= mr if $N \cdot \omega_i = N \cdot \omega_o > 0$ = 0 otherwise

CPSC 424: Computer Graphics • Fall 2025

 $https://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function$

Path Tracing

- Monte Carlo method for solving the rendering equation
 - uses repeated random sampling to approximate a solution
- basic algorithm for solid objects
 - cast ray from viewer through pixel into scene
 - at each intersection, choose the next ray to follow according to the BSDF distribution for that point
 - repeat until ray hits a light source (which only emits), a skybox, or nothing

repeat many times for each pixel and average the colors

- each point's color is determined by the color of the emitter or skybox, colors of surfaces hit along the way, and angles at which light hits each surface
 - = emitted light + incoming light × fraction reaching surface × fraction reflected in outgoing direction

CPSC 424: Computer Graphics • Fall 2025

Volumetric Path Tracing

- can extend the rendering equation to include a scattering term
- idea
 - use BSDF for the medium to determine a probability distribution on how far light will travel before being scattered
 - choose the next ray direction and length according to the BSDF for that point

CPSC 424: Computer Graphics • Fall 2025

6

