
Solving the Rendering Equation

- path tracing [1986] is one algorithm for generating approximate solutions to the rendering equation
 - unbiased correct (no systematic error) but computationally expensive to reduce noise to a sufficiently low level
 - often used to generate reference images for testing other renderers
- there are others
 - e.g. photon mapping [1995]
 - two-pass algorithm traces rays from camera and rays from light sources
 - · Monte Carlo method
 - e.g. radiosity [1984]
 - finite element method (numerical solution) based on simulating energy transfer
 - · viewpoint independent
 - · only accounts for diffuse reflection

CPSC 424: Computer Graphics • Fall 2025

Radiosity Example

Radiosity

- radiosity is the rate at which energy leaves a surface
 - sum of rate at which surface emits energy and at which it reflects incident energy
- the idea: simulate the energy transfer between diffuse surfaces in the scene
 - subdivide scene into little patches and consider how each pair of patches send and receive light energy
 - mathematics based on thermal engineering models of emission and reflection
 - assumes conservation of energy in closed environments
 - an approximation! (patches should be infinitely small)
 - brightness (color) of surface in rendered scene is proportional to its radiosity
- notes

CPSC 424: Computer Graphics • Fall 2025

- only captures diffuse reflection
- method is view independent

Radiosity Example: Equations B_{surf} = radiosity of surface *surf* (watts/m²) = sum of light emitted and light reflected light reaching surface = sum of the product of the light leaving other surfaces and the fraction reaching this surface ceiling left right $B_{ceiling} = 0 + .75 (.25 B_{rwall} + .25 B_{lwall} + .5 B_{floor})$ wall wall $B_{floor} = 0 + .10 (.25 B_{rwall} + .25 B_{lwall} + .5 B_{ceiling})$ $B_{lwall} = 0 + .75 \left[.25 B_{ceiling} + .25 B_{floor} + .5 B_{rwall} \right]$ $B_{rwall} = 1 + .01 \left| .25 B_{ceiling} + .25 B_{floor} + .5 B_{lwall} \right|$ floor light emitted by this surface fraction of light reflected by this surface

General Radiosity Equation

$$B_k = E_k + \rho_k \sum_{j=1}^n \frac{B_j A_j F_{jk}}{A_k}$$

for a scene with n patches

 B_{ν} = total radiosity for patch k (watts/m²)

 E_k = light emitted from patch k (watts/m²)

 $\rho_k=$ reflectivity factor (fraction of incident energy reflected by patch {\it k}, 0 \le \rho_k \le 1)

 $B_i A_i = \text{total energy radiated by patch } j$ with area A_i

 F_{ik} = form factor (fraction of energy leaving patch j that arrives at patch k)

 $(B_jA_jF_{jk})/A_k$ = energy leaving patch j and arriving at patch k per unit area of patch k

n equations, n unknowns ... can solve!

CPSC 424: Computer Graphics • Fall 2025

84

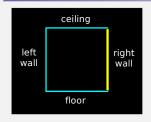
Solving the Radiosity Equations

$$B_k = E_k + \rho_k \sum_{j=1}^n \frac{B_j A_j F_{jk}}{A_k}$$

- strategy #2: gathering
 - iteratively compute energy reaching each patch
 - allows for progressive refinement

CPSC 424: Computer Graphics • Fall 2025

Solving the Radiosity Equations


$$B_k = E_k + \rho_k \sum_{j=1}^n \frac{B_j A_j F_{jk}}{A_k}$$

- strategy #1: apply numerical techniques for solving systems of equations
 - large scenes can easily have 10,000+ patches
 - requires a lot of computation to solve 10,000 simultaneous equations and to compute 10⁸ form factors
 - (though we haven't said how that is done yet)
 - requires a lot of memory to solve 10,000 simultaneous equations and to store 10⁸ form factors

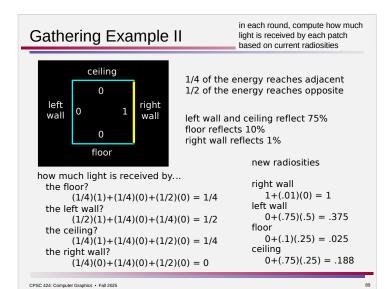
CPSC 424: Computer Graphics • Fall 2025

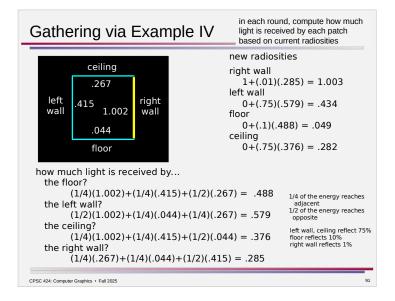
81

Gathering Example I

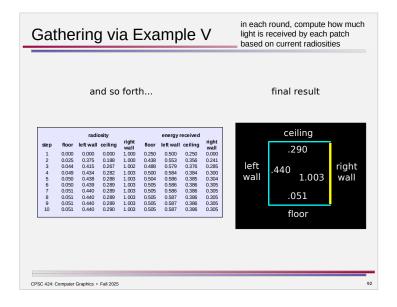
current radiosities

right wall 1 left wall 0 floor 0 ceiling 0 due to the geometry of the room, 1/4 of the energy leaving a surface reaches an adjacent surface 1/2 of the energy leaving a surface reaches the opposite surface


the left wall and ceiling are painted white, and each reflect 75% of the energy hitting them the floor is carpeted with a dark carpet, and reflects 10% of the


energy hitting it the right wall is a window, and reflects 1% of the energy hitting it

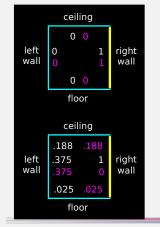
the right wall emits one unit of light


CPSC 424: Computer Graphics • Fall 2025

88

in each round, compute how much Gathering via Example III light is received by each patch based on current radiosities new radiosities ceiling right wall 1+(.01)(.241) = 1.002.188 left wall left right 0+(.75)(.553) = .415.375 wall wall floor 0+(.1)(.438) = .044.025 ceiling 0+(.75)(.356) = .267floor how much light is received by... the floor? (1/4)(1)+(1/4)(.375)+(1/2)(.188) = .4381/4 of the energy reaches the left wall? adiacent 1/2 of the energy reaches (1/2)(1)+(1/4)(.025)+(1/4)(.188) = .553opposite the ceiling? left wall, ceiling reflect 75% (1/4)(1)+(1/4)(.375)+(1/2)(.025) = .356floor reflects 10% right wall reflects 1% the right wall? (1/4)(.188)+(1/4)(.025)+(1/2)(.375) = .241CPSC 424: Computer Graphics • Fall 2025

Solving the Radiosity Equations


$$B_k = E_k + \rho_k \sum_{j=1}^n \frac{B_j A_j F_{jk}}{A_k}$$

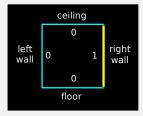
- strategy #3: shooting
 - iteratively send energy from one patch at a time to other patches
 - · choose patch with highest unshot radiosity
 - allows for progressive refinement
 - converges faster than gathering
 - requires less data resident in memory at one time

CPSC 424: Computer Graphics • Fall 2025

93

Shooting Example II

choose patch with highest unshot radiosity and distribute to other patches, adding to their radiosities

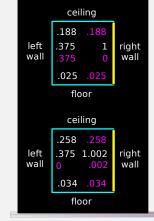

current radiosity unshot radiosity

shoot from the right wall...

receives (1/4)(1) = .25 reflects back (.75)(.25) = .188 left wall receives (1/2)(1) = .5 reflects back (.75)(.5) = .375 floor receives (1/4)(1) = .25 reflects back (.1)(.25) = .025

CPSC 424: Computer Graphics • Fall 2025

Shooting Example I


due to the geometry of the room, 1/4 of the energy leaving a surface reaches an adjacent surface 1/2 of the energy leaving a surface reaches the opposite surface

the left wall and ceiling are painted white, and each reflect 75% of the energy hitting them the floor is carpeted with a dark carpet, and reflects 10% of the energy hitting it the right wall is a window, and reflects 1% of the energy hitting it

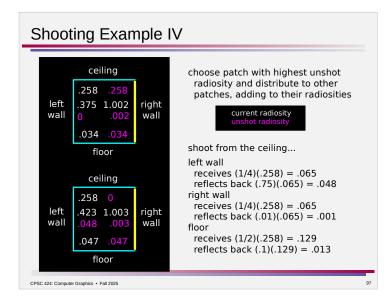
the right wall emits one unit of light

CPSC 424: Computer Graphics • Fall 2025

Shooting Example III

choose patch with highest unshot radiosity and distribute to other patches, adding to their radiosities

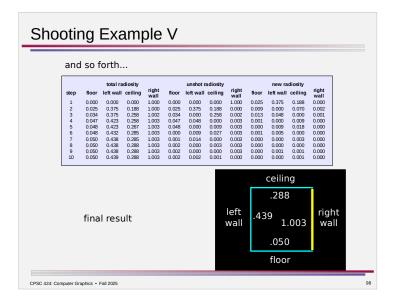
> current radiosity unshot radiosity


shoot from the left wall...

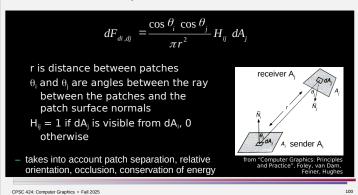
ceiling receives (1/4)(.375) = .094 reflects back (.75)(.094) = .07 right wall receives (1/2)(.375) = .188 reflects back (.01)(.188) = .002 floor

receives (1/4)(.375) = .094reflects back (.1)(.094) = .009

CPSC 424: Computer Graphics • Fall 2025


96

Solving the Radiosity Equations


$$B_k = E_k + \rho_k \sum_{j=1}^{n} \frac{B_j A_j F_{jk}}{A_k}$$

- strategy #4: importance-driven radiosity
 - shoot from patch which contributes most to the scene
 - allows for progressive refinement
 - converges faster than shooting
 - view dependent

Computing Form Factors

• form factor for very small sender area $\mathrm{dA_i}$ and very small receiver area $\mathrm{dA_i}$

CPSC 424: Computer Graphics • Fall 2025

Radiosity Summary

- advantages
 - nice results when there are many diffuse surfaces
 - obtain proper color bleeding effects
 - area light sources produce soft shadows
 - no ambient term hack for low lighting, just adjust the light intensities
 - view-independent (except in some variations)

- limitations
 - many assumptions!
 - assumes radiation from light source is uniform in all directions
 - assumes intermediate medium is non-participatory
 - assumes opaque surfaces
 - assumes no diffraction
 - matrices are huge very computationally and memory intensive
 - computation of form factors can be difficult
 - does not capture specular reflection

CPSC 424: Computer Graphics • Fall 2025

101

Radiosity and Raytracing

- radiosity is good for diffuse surfaces but poor for specular reflections
- raytracing is good for specular reflections but poor for diffuse surfaces
- but simply adding radiosity and raytracing intensities doesn't (quite) work...
 - raytrace first, then apply radiosity with highlights treated as new lights
 - apply radiosity first, then raytrace with each point treated as a light source emitting its radiosity
- in both cases, blend colors obtained from each pass

CPSC 424: Computer Graphics • Fall 2025

102