Prerequisites for Math 130

The material below represents only **some** of the basic material with which you should be familiar. We will **not** be reviewing this material. You may wish to consult Appendix A in your your text as well as parts of Chapter 1.

1. Exponents and radicals, including:

a)
$$x^m x^n = x^{m+n}$$
 b) $(x^m)^n = x^{mn}$ c) $\sqrt[n]{x} = x^{1/n}$
d) $\frac{1}{x^n} = x^{-n}$ e) $\sqrt[n]{x^m} = x^{m/n}$

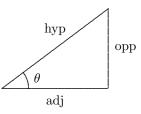
2. The quadratic formula: If $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

- **3.** Interval notation (note the different types of brackets):
 - a) Open interval: a < x < b or (a, b).
 - **b)** Closed interval: $a \le x \le b$ or [a, b].
 - c) Half-open interval: $a \le x < b$ or [a, b) and $a < x \le b$ or (a, b].
 - **d)** Various rays: x < a or $(-\infty, a)$; $a \ge x$ or $[a, \infty)$.
 - e) All reals: $(-\infty, \infty)$.

4. Absolute value: If a > 0, then:

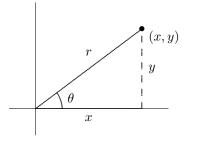
- a) |x| = a means $x = \pm a$.
- **b)** |x| < a means -a < x < a or (-a, a).
- c) $|x| \leq a$ means $-a \leq x \leq a$ or [-a, a].
- d) |x| > a means x < -a or x > a or $(-\infty, -a) \cup (a, \infty)$.
- e) $|x| \ge a$ means $x \le -a$ or $x \ge a$ or $(-\infty, -a] \cup [a, \infty)$.
- f) Note that $\sqrt{x^2} = |x|$ not just x. (Try a negative value for x to see why.)
- 5. a) The expression |x a| represents the *distance* between x and a. So for example, |x 2| = 3 says that the distance between x and 2 is 3. (So x is either 5 or -1.) You can also use the the expressions above to solve this:

$$|x-2| = 3 \Longrightarrow \begin{cases} x-2=3 & \text{or } x=5, \\ x-2=-3 & \text{or } x=-1 \end{cases}$$


- b) With an inequality such as |x-2| < 3, again use the basic definitions. |x-2| < 3 means -3 < (x-2) < 3 or -1 < x < 5.
- 6. The distance formula for the distance between two points (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$. This can be derived directly from the Pythagorean theorem if you draw the two points and a right triangle determined by them.
- **7.** Equations of lines:
 - a) Slope-intercept form: y = mx + b.
 - b) Point-slope form: $y y_0 = m(x x_0)$, where (x_0, y_0) is a point on the line. This is particularly useful for calculus.
 - c) Know how to obtain the equation of line from two points (x_1, y_1) and (x_2, y_2) .
- 8. Functions including domain and range. Composition of functions $f \circ g(x) = f(g(x))$. For example, if $f(x) = x^2 6$ and $g(x) = 1 + 2x^3$, then

$$f \circ g(x) = f(g(x)) = f(1+2x^3) = (1+2x^3)^2 - 6 = 1 + 4x^3 + 4x^6 - 6 = 4x^3 + 4x^6 - 5 = 4x^6 - 5 = 4x^3 + 4x^6 - 5 = 4x^6 - 5 = 4x^6 + 5x^6 +$$

- 9. Basic geometry formulas:
 - **a)** Triangles, Area: $A = \frac{1}{2}bh$.
 - **b)** Rectangles, Area: A = lw, Perimeter: P = 2l + 2w.
 - c) Circles, Area: $A = \pi r^2$, Circumference: $C = 2\pi r$.
 - d) Spheres, Volume: $V = \frac{4}{3}\pi r^3$, Surface Area: $SA = 4\pi r^2$.
 - e) Cylinder, Volume: $V = \pi r^2 h$, Surface Area: $SA = 2\pi r^2 + 2\pi r h$.
 - **f)** Cone, Volume: $V = \frac{1}{3}\pi r^2 h$.
 - g) Rectangular box, Volume: V = lwh, Surface Area: SA = 2lw + 2lh + 2wh.


10. We will always measure angles in *radians*. The conversion factors are:

- a) π radians = 180°.
- **b)** So $1^{\circ} = \frac{\pi}{180}$ rad
- **c)** and 1 rad = $\frac{180}{\pi}^{\circ}$.
- 11. Recall for a right triangle like the one below, we can define the basic trig functions in terms of the sides of the triangle.

a)
$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$
 b) $\cos \theta = \frac{\text{adj}}{\text{hyp}}$ **c)** $\tan \theta = \frac{\text{opp}}{\text{adj}}$ **d)** $\sec \theta = \frac{\text{hyp}}{\text{adj}}$

12. For more general angles,

a)
$$\sin \theta = \frac{y}{r}$$
 b) $\cos \theta = \frac{x}{r}$ **c)** $\tan \theta = \frac{y}{x}$ **d)** $\sec \theta = \frac{r}{x}$

13. You should know the values of the trig functions at these basic angles.

θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_

Elementary Practice

Here's a quick review of even more basic topics. I assume that you know all of this material extremely well.

Exponents and radicals:

- 1. Simplify and evaluate: $(2\sqrt{5})(2\sqrt{5})(5\sqrt{2})(5\sqrt{2})$
- 2. Write in simplified exponential form:

a)
$$(x^3)^2$$
 b) $(x^3 \cdot y^2)^{-1}$ c) $(-2x)^{-5}$
d) $\frac{x \cdot y^{-2}}{y^{-4}x^{-1}}$ e) $(-2)^0$ f) $(z^{-2})^{-2}$

3. Simplify each expression:

a)
$$(-8z^6)^{2/3}$$
 b) $6y^2(2y^4)^2$ c) $\frac{25y^8}{10y^4}$ d) $\frac{12(x+y)^3}{9(x+y)^5}$ e) $\frac{10(x-y)^{5/3}}{15(x-y)^{9/3}}$

4. Rewrite each expression below in simplified exponential form (no radicals):

a)
$$\frac{1}{\sqrt{x}}$$
 b) $\sqrt[9]{x^6}$ c) $6\sqrt[5]{y^2}$ d) $2\sqrt[9]{z^3}$ e) $\frac{1}{2\sqrt[4]{x^3}}$ f) $\sqrt[6]{(x+1)^4}$

5. Expand each of these powers:

a)
$$(x-2)^3$$
 b) $(x-\sqrt{5})^2$

6. Factor each expression completely:

a) $x^2 + 10x + 25$ b) $4x^2 - 4xy + y^2$ c) $t^2 - t - 6$ d) $49 - 9y^2$ e) $9u^2 - 4v^2$ f) $6x^2 - 54$ g) $-2x^3 + 2x^2 + 4x$

7. Simplify these rational functions.

a)
$$\frac{8(x+1)^4 + 7x^3(x+1)^2}{(x+1)^4}$$
 b) $\frac{9(x-2)^3(x+1) - 2(x-2)^4(x-1)^2}{(x-2)^6}$

Composition

8. Let f(x) = x² − 4x + 1, g(x) = 2 − x, and h(x) = 3 sin x, determine the expressions for
a) f ∘ g(x)
b) h ∘ g(x)

Elementary Practice Answers

Exponents and radicals:

1.
$$(2\sqrt{5})(2\sqrt{5})(5\sqrt{2})(5\sqrt{2}) = (4 \times 5)(25 \times 2) = 1000$$

2. Simplified expressions:

a)
$$x^6$$
 b) $x^{-3}y^{-2}$ c) $-32x^{-5}$
d) x^2y^2 e) 1 f) z^4

3. Simplified:

a)
$$4z^4$$
 b) $24y^{10}$ c) $\frac{5y^4}{2}$ d) $\frac{4(x+y)^{-2}}{3}$ e) $\frac{2(x-y)^{-4/3}}{3}$

4. Exponential form:

a)
$$\frac{1}{\sqrt{x}} = x^{-1/2}$$

b) $\sqrt[9]{x^6} = x^{2/3}$
c) $6\sqrt[5]{y^2} = 6y^{2/5}$
d) $2\sqrt[9]{z^3} = 2z^{1/3}$
e) $\frac{1}{2\sqrt[4]{z^3}} = \frac{z^{-4/3}}{2}$
f) $((x+1)^4)^{1/6} = (x+1)^{2/3}$

5. Expanded powers:

a) $x^3 - 6x^2 + 12x - 8$ **b)** $x^2 - 2x\sqrt{5} + 5$

6. Factored:

a)
$$(x+5)^2$$
 b) $(2x-y)^2$ c) $(t-3)(t+2)$ d) $(7-3y)(7+3y)$
e) $(3u-2v)(3u+2v)$ f) $6(x-3)(x+3)$ g) $-2x(x-2)(x+1)$

7. Simplified:

a)
$$\frac{8(x+1)^2 + 7x^3}{(x+1)^2}$$
 b) $\frac{9(x+1) - 2(x-2)(x-1)^2}{(x-2)^3}$

8. Composition: Let $f(x) = x^2 - 4x + 1$, g(x) = 2 - x, and $h(x) = 3 \sin x$, determine the expressions for

a)
$$f(g(x)) = f(2-x) = (2-x)^2 - 4(2-x) + 1 = x^2 - 3$$

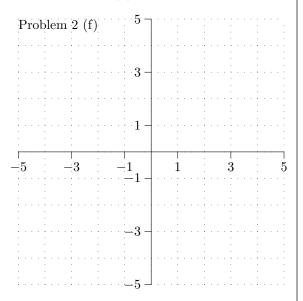
b) $h(g(x)) = h(2-x) = 3\sin(2-x)$

Math 130 Prereqs Hand In

Review the material on the previous pages as needed. You may wish to consult Appendix A and Chapter 1 of your text.

1. Factor completely and simplify: $(x+3)^2 - 4(x+3)$.

4. Page 8 #42


2. Notation and Piecewise Functions. (See page 12, Examples 3 and 4.) Define

$$f(x) = \begin{cases} x+2 & \text{if } x < 1, \\ x^2+1 & \text{if } x \ge 1. \end{cases}$$

Evaluate the following:

a) f(3) =

- **b)** f(-6) =
- c) f(1) =
- **d)** f(0.99) =
- **e)** f(f(0)) =
- **f)** Draw a graph of f(x) on the axes below.

The next problems are in the text. Show your work.

5. Page 9 #54
A)
B)
C)
6. Page 19 #16

$$f(x) = -$$

Work, if needed.

7. a) According to page 29,

 $y = \log_b x$ provided

b) Now do page 33 # 34.

- 8. Give the exact value (no decimals) for each of these trig and inverse trig functions.
 11. Extra Credit
 a) Page 20 #2
 - a) $\sin \frac{\pi}{3}$
 - b) $\cos \frac{\pi}{2}$
 - c) $\tan \frac{\pi}{3}$
 - **d**) $\sin^{-1} \frac{1}{2}$
 - e) $\cos^{-1}\frac{1}{2}$
- **9.** Complete the table.

Interval Notation	Set Notation	Graph	
		$\begin{array}{c c} & & \\ \hline & & \\ -2 & -1 & 0 \end{array} \rightarrow x$	
$(-\infty, -4]$			
	$\left\{x:\ 3 \le x \le \frac{11}{2}\right\}$		
(-1,7)			

10. a) According to "Properties of the Absolute Value" in Appendix A page 1063: |x| < a means the same thing as

a) Page 20 #26 (see Example 6 in the text).

b) (You will need to use a calculator.)

Height of a Mountain In traveling across flat land, you notice a mountain directly in front of you. Its angle of elevation (to the peak) is 3.5° . After you drive 13 miles closer to the mountain, the angle of elevation is 9° . Approximate the height of the mountain.

b) Use the property above to solve |2x - 4| < 6.

Background Information

1.	Name (and nick name):		Section 8:00 AM
2.	Year: FY, SO, JR, SR		College: HC, WSC
3.	Phone number:		
4.	Advisor:		
5.	(Potential) Major(s):	Minor(s):	

6. I am taking this course because

7. What was your favorite course (any subject) at HWS (and/or high school if you are a first-year student)? Why was this course your favorite?

8. Career interests and aspirations:

9. Hobbies, sports, or other activities that you enjoy (other than doing math!):

10. I have read the syllabus and understand both the grading and the attendance policies. I understand that missing more than three classes and/or labs will lower my grade and that missing more than six may lead to automatic expulsion from the course.

Signature: _____