## Inverse Functions

## Introduction

Often in the course of solving an equation we use one function to **undo** (the effect of) another function. We do this without really thinking about it. For example, suppose we want to solve

$$x^3 = 1000$$
.

We use the cube root function to undo the cubing function

$$x = 10.$$

Implicitly what we've said is that

$$x^{3} = 1000 \Rightarrow \sqrt[3]{x^{3}} \Rightarrow \sqrt[3]{1000} \Rightarrow x = 10.$$

The function  $g(x) = \sqrt[3]{x}$  'undid' the cubing function  $f(x) = x^3$ . This sounds trivial, but it is not always possible to do (or rather 'undo') this. Consider

$$x^2 = 100$$

$$\sqrt{x^2} = \sqrt{100}$$

$$x = \pm 10$$

The square root function does not undo the squaring function. We can't undo the squaring function unless we know more about x... if we knew x were positive, we'd be able to say x = 10. So why can we undo some functions and not others?

Key Idea: One-to-one Functions

**DEFINITION 21.1.** A function f is **one-to-one** if whenever  $x_1 \neq x_2$ , then  $f(x_1) \neq f(x_2)$ . This means that f never has the same output twice.

You should memorize this definition.

**EXAMPLE 21.1.** The function on the left is NOT one-to-one, because  $f(x_1) = f(x_2)$  even though  $x_1 \neq x_2$ . Similarly  $f(x_3) = f(x_4)$  even though  $x_3 \neq x_4$ .





The function on the right is one-to-one; it never has the same output value twice.

**EXAMPLE 21.2.** Show that the function  $f(x) = \sqrt{x^2 + 9}$  is not one-to-one.

**SOLUTION.** Using the definition of one-to-one, we need to find two different values  $x_1 \neq x_2$  so that  $f(x_1) = f(x_2)$ . We know that the squaring function produces the same output for inputs a and -a. So if we use  $x_1 = 1$  and  $x_2 = -1$ , then  $f(x_1) = \sqrt{1^2 + 9} = \sqrt{10}$  and  $f(x_2) = \sqrt{(-1)^2 + 9} = \sqrt{10}$ . We get the same output twice, so f is not one-to-one.

**YOU TRY IT 21.1.** Show that the function  $f(x) = x^2 + \cos x$  is not one-to-one.

Look back at the graphs in Example 21.1. The reason that one function does not have an inverse is because a horizontal line meets the graph twice. The horizontal line represents a particular *y*-value. If it meets the graph twice, there must be two different *x*-values that have the same *y*-value. So we have the following theorem.

**THEOREM 21.1** (Horizontal Line Test, HLT). A function is one-to-one if and only if no horizontal line meets the graph more than once.





YOU TRY IT 21.2. Draw a function that passes the HLT and one that fails it.





## **Inverse Functions**

Let's make the notion of two functions of undoing each other precise.

**DEFINITION 21.2.** A function g is the **inverse** of the function f if

- 1. g(f(x)) = x for all x in the domain of f
- 2. f(g(x)) = x for all x in the domain of g

In this situation g is denoted by  $f^{-1}$  and is called "f inverse." Notice g is the inverse of  $f \iff f$  is the inverse of g.

The key fact is that

**THEOREM 21.2.** f has an inverse  $\iff f$  is one-to-one  $\iff f$  passes the HLT.

**EXAMPLE 21.3.** Show that  $f(x) = \frac{1}{x+1}$  and  $g(x) = \frac{1}{x} - 1$  are inverses.

**SOLUTION.** Let's check the two conditions of the definition:

1. 
$$g(f(x)) = g\left(\frac{1}{x+1}\right) = \frac{1}{\frac{1}{x+1}} - 1 = (x+1) - 1 = x$$
 for all  $x$  in the domain of  $f$ 

2. 
$$f(g(x)) = f\left(\frac{1}{x} - 1\right) = \frac{1}{\left(\frac{1}{x} - 1\right) + 1} = \frac{1}{\frac{1}{x}} = x$$
 for all  $x$  in the domain of  $g$ 

So we have verified the two conditions and g is  $f^{-1}$ .

The Graph of  $f^{-1}$ 

Now suppose that y = f(x) has an inverse,  $f^{-1}(x)$  and assume that a is in the domain of f and that f(a) = b. Then using the definition of inverse:

$$f^{-1}(b) \stackrel{f(a) = b}{=} f^{-1}(f(a)) \stackrel{\text{Inverse}}{=} a$$

In other words

$$f(a) = b \iff f^{-1}(b) = a$$

or

$$(a,b)$$
 on the graph of  $f \iff (b,a)$  is on the graph of  $f^{-1}$ 

In other words, f and  $f^{-1}$  have their x and y coordinates switched. And because the *x* and *y* coordinates are switched.

- Domain of  $f^{-1}$  = Range of f
- Range of  $f^{-1}$  = Domain of f

If f is one-to-one, we can obtain the graph of  $f^{-1}$  by interchanging the x and y coordinates. If we draw the diagonal line y = x and use it as a mirror, notice that the *x* and *y* axes are reflected into each other across the line. This is just another way of saying that the x and y coordinates have been switched. So to obtain the graph of  $f^{-1}$  all we need to do is to reflect the graph of f in the diagonal line y = x, as shown below.



**YOU TRY IT 21.3.** Draw the graph of  $f^{-1}$  for the function f graphed below.



When we are given the function formula for f rather than the graph, we can also find the formula for  $f^{-1}$  using the following three steps.

- 1. Write y = f(x)
- 2. Solve for *x* in terms of *y*. This amounts to finding  $x = f^{-1}(y)$ .
- 3. Interchange the variable names to get  $y = f^{-1}(x)$ .

**EXAMPLE 21.4.** Assume that  $y = f(x) = 5x^3 + 7$  is one-to-one so that it has an inverse. To find  $f^{-1}(x)$ , we follow the three steps above.

- 1. Write  $y = 5x^3 + 7$
- 2. Solve for  $x: y = 5x^3 + 7 \Rightarrow y 7 = 5x^3 \Rightarrow \frac{y 7}{5} = x^3 \Rightarrow \sqrt[3]{\frac{y 7}{5}} = x$

3. Interchange the variables:  $f^{-1}(x) = y = \sqrt[3]{\frac{x-7}{5}}$ 

Notice that we could also find the inverse of  $y = f(x) = 5x^3 + 7$  by thinking about the order of operations of f and reversing them: To carry out f, first cube x, then multiply by 5, then add 7. To undo this, first subtract 7 to get x - 7, then divide by 5 to get  $\frac{x - 7}{5}$ , and finally take the cube root  $f^{-1}(x) = y = \sqrt[3]{\frac{x - 7}{5}}$ .

**YOU TRY IT 21.4.** Assume that  $y = f(x) = 4 + \frac{3}{x}$  is one-to-one so that it has an inverse. Find  $f^{-1}(x)$ .

The Inverse of the Exponential Function  $e^x$ 

Now consider  $y = f(x) = e^x$ . We have seen that this function is increasing and that it appears to pass the HLT, so it has an inverse. Using the graph of  $e^x$ , we can draw the graph of its inverse.



The inverse of the exponential function is the **natural log** function and is denoted by  $y = \ln x$ . Using the definition of inverse:

$$f(a) = b \iff f^{-1}(b) = a$$
  
 $e^a = b \iff \ln b = a$ 

This means that logs are exponents of e (note where a is in the last line). Since inverse functions interchange the roles of x and y, this means that the domains and the ranges of the two functions are reversed.

- Domain of  $\ln x = \text{Range of } e^x = (0, \infty) \text{ or } x > 0.$
- Range of  $\ln x = \text{Domain of } e^x = (-\infty, \infty) \text{ or all } x.$

Again using basic properties of inverses,

1. 
$$f^{-1}(f(x)) = x$$
 or  $\ln(e^x) = x$  for all  $x$ .

2. 
$$f(f^{-1}(x)) = x$$
 or  $e^{\ln x} = x$  for  $x > 0$ .

*The Derivative of*  $y = \ln x$ 

As calculus students one of out first questions should be can we find the derivative of  $\ln x$ . So let  $y = f(x) = \ln x$ . Our goal is to find  $\frac{dy}{dx}$  or f'(x). We will use the

Because logs are exponents, logs have the following very useful properties:

$$(1) \ln(xy) = \ln x + \ln y$$

(2) 
$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y$$

(3) 
$$\ln(x^r) = r \ln x$$

method below a few more times to find derivatives of inverses of other functions. Assume x > 0 so the the natural log is defined. Start with

$$y = \ln x$$
.

Take the inverse of both sides

$$e^y = e^{\ln x}$$
.

Simplify

$$e^y = x$$
.

Take the derivative using the chain rule (implicit differentiation)

$$\frac{d}{dx}(e^y) = \frac{d}{dx}(x)$$

Simplify

$$e^{y}\frac{dy}{dx}=1$$

Solve for  $\frac{dy}{dx}$ 

$$\frac{dy}{dx} = \frac{1}{e^y}$$

Substitute back in for y

$$\frac{dy}{dx} = \frac{1}{e^{\ln x}}$$

And simplify

$$\frac{dy}{dx} = \frac{1}{x}$$

That is, we have shown

THEOREM 21.3. The natural log function is differentiable and

$$\frac{d}{dx}(\ln x) = \frac{1}{x}.$$

More generally, the chain rule version is

$$\frac{d}{dx}(\ln u) = \frac{1}{u} \cdot \frac{du}{dx}.$$

**EXAMPLE 21.5.** If  $f(x) = \ln(x^2 + 7)$ , then  $u = x^2 + 7$  so

$$\frac{d}{dx}[\ln(x^2+7)] = \frac{1}{u}\frac{du}{dx} = \frac{1}{x^2+7} \cdot 2x = \frac{2x}{x^2+7}.$$

If  $f(x) = \ln(6x^3 \sin x)$ , then since we have the log of a product, we can simplify first using a log property

$$\frac{d}{dx}[\ln(6x^3\sin x)] = \frac{d}{dx}[\ln(6x^3) + \ln(\sin x)] = \frac{1}{6x^3} \cdot 18x^2 + \frac{1}{\sin x}\cos x = \frac{3}{x} + \cot x.$$

$$\frac{d}{dx} \left[ \ln \left( \frac{\tan 9x}{x^2 + 4} \right) \right] = \frac{d}{dx} \left[ \ln(\tan 9x) - \ln(x^2 + 4) \right] = \frac{1}{\tan 9x} \cdot 9 \sec^2 9x + \frac{1}{x^2 + 4} \cdot 2x$$

$$= \frac{9 \sec^2 9x}{\tan 9x} + \frac{2x}{x^2 + 4}.$$

Using the power property for logs,

$$\frac{d}{dx} \left[ \ln \sqrt{x^2 + x + 10} \right] = \frac{d}{dx} \left[ \frac{1}{2} \ln(x^2 + x + 10) \right] = \frac{1}{2} \cdot \frac{1}{x^2 + x + 10} \cdot (2x + 1)$$
$$= \frac{2x + 1}{2(x^2 + x + 10)}.$$

An Important Special Case. Since we can only take logs of positive numbers, often times we use the log of an absolute value, e.g.,  $\ln |x|$ . We can find the derivatives of such expressions as follows.

$$D_x[\ln|x|] = \begin{cases} D_x[\ln x] & \text{if } x > 0, \\ D_x[\ln(-x)] & \text{if } x < 0 \end{cases} = \begin{cases} \frac{1}{x} & \text{if } x > 0, \\ \frac{1}{-x}(-1) = \frac{1}{x} & \text{if } x < 0 \end{cases} = \frac{1}{x} \text{ if } x \neq 0$$

In other words, we get the 'same rule' as without the absolute value:

**THEOREM 21.4.** For  $x \neq 0$ ,

$$D_x(\ln|x|) = \frac{1}{x}$$

The chain rule version when u is a function of x is

$$\frac{d}{dx}(\ln|u|) = \frac{1}{u} \cdot \frac{du}{dx}.$$

**EXAMPLE 21.6.** Here's one that involves a number of log properties:

$$D_{t} \left[ \ln \left| \frac{e^{t} \cos t}{\sqrt{t^{2} + 1}} \right| \right] = D_{t} \left[ \ln e^{t} + \ln \left| \cos t \right| - \ln \sqrt{t^{2} + 1} \right]$$

$$= D_{t} \left[ t + \ln \left| \cos t \right| - \frac{1}{2} \ln \left| t^{2} + 1 \right| \right]$$

$$= 1 + \frac{1}{\cos t} \cdot (-\sin t) - \frac{2t}{2(t^{2} + 1)}$$

$$= 1 - \tan t - \frac{t}{t^{2} + 1}$$

**YOU TRY IT 21.5.** Try finding these derivatives. Use log rules to simplify the functions before taking the derivative.

- (a)  $D_x \left[ \ln |6x^3 \sin x| \right]$
- (b)  $D_x \left[ 6x^3 \ln |\sin x| \right]$  (different)
- $(c) D_x \left[ \ln \left| \frac{x^4 1}{x^2 + 1} \right| \right]$
- (d)  $D_t \left[ \ln(t^{(e^t)}) \right]$
- (e)  $D_x \left[ \ln \sqrt[3]{3x^3 + x + 1} \right]$
- (f)  $D_s \left[ \ln \left( 5^{\ln s} \right) \right]$