Inverse Trig Functions

Previously in Math 13o0. ..

DEFINITION 24.1. A function g is the inverse of the function f if
1. g(f(x)) = x for all x in the domain of f
2. f(g(x)) = x for all x in the domain of g

In this situation g is denoted by f —1 and is called “ f inverse."

The Key Fact on the Existence of Inverses

THEOREM 24.1. f has an inverse <= f is one-to-one <= f passes the HLT.

The Graph of f~1

Now suppose that y = f(x) has an inverse, f ~!(x) and assume that a is in the
domain of f and that f(a) = b. Then using the definition of inverse:

fla)=b <= f(fa) = f1b) <= a ™= ().

In other words

fla)=b < f(b)=a

or

(a,b) on the graph of f <= (b,a) is on the graph of f~!

In other words, f and f~! have their x and y coordinates switched. And because
the x and y coordinates are switched.

 Domain of f~! = Range of f
¢ Range of f~! = Domain of f

If f is one-to-one, we can obtain the graph of f~! by interchanging the x and y
coordinates. If we draw the diagonal line y = x and use it as a mirror, notice that
the x and y axes are reflected into each other across the line.

This is just another way of saying that the x and y coordinates have been switched.

So to obtain the graph of f~! all we need to do is to reflect the graph of f in the
diagonal line y = x, as shown to the right.
Introduction

None of the trig functions have inverses because none of them pass the horizontal
line test. Their values repeat every 27t units or every 7t units (tangent, cotangent).
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The Inverse Sine Function

However, if we restrict the domain of the sine function (or any of the other trig
functions) we can make the function one-to-one on the restricted interval. The
figure on the left below shows sin x restricted to the interval [—7/2, 1/2] where
it is, indeed, one-to-one (passes HLT). So it has an inverse there, which we have
graphed in red the figure on the right.
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The inverse sine function is denoted by arcsin x. Your text uses sin~! x, but most
students find arcsin x less confusing, and that’s what we will generally use in this
course. Since the domain and range of the sine and inverse sine functions are
interchanged, we have

e the domain of arcsin x is the range of the restricted sinx: [—1,1].

e the range of arcsin x is the domain of the restricted sinx: [—71/2, 7r/2]. This is
very important. It says that the output of the inverse sine function is a number
(an angle) between —7r/2 and 7r/2.

Notice since the arcsine function undoes the sine function, we get some familiar
values: arcsin(—1) = —7/2 since sin(—7n1/2) = —1. Or arcsin(1/2) = 71/6 since
sin(7r/6) = 1/2. Or arcsin(y/3/2) = 71/3 since sin(7/3) = v/3/2.

EXAMPLE 24.1. Normally when we calculate f~1(f(x)) we get x because the two func-
tions undo each other. The same is true here, if the domain of sin x is appropriately
restricted to [—7/2, 71/2]. For example,

arcsin(sin(7r/4)) = arcsin(v/2/2) = 7/4.

But if we take a value outside of the restricted domain [—7/2, 7t/2] of the sine func-
tion

arcsin(sin(377/4)) = arcsin(v/2/2) = /4.

arcsin(sin(37)) = arcsin(0) = 0.

The two functions do not undo each other since the arcsine function can only return
values (or angles) between —7t/2 and 7r/2.

The Inverse Cosine Function

We can restrict the domains of the other trig functions so that they, too, have in-
verses. The figure on the left below shows cos x restricted to the interval [0, 77]
where it is, indeed, one-to-one. So it has an inverse there, which we have graphed



in red the figure on the right.
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The inverse cosine function is denoted by arccos x. Since the domain and range of
the cosine and inverse cosine functions are interchanged, we have

e the domain of arccos x is the range of the restricted cosx: [—1,1].

e the range of arccos x is the domain of the restricted cos x: [0, 7t].

EXAMPLE 24.2. Again we have to be careful about calculating the composites of these
inverse functions. They are only inverses when the inputs are in the correct domains.

For example,
arccos(cos(7r/4)) = arccos(v/2/2) = 1 /4.

But if we take a value outside of the restricted domain [0, 7] of the cosine function
arccos(cos(—7/4)) = arccos(v/2/2) = /4.

Or
arccos(cos(37)) = arccos(—1) = 7.

The two functions do not always undo each other since the inverse cosine function can
only return values between 0 and 7.

The Inverse Tangent Function

The figure on the left below shows tan x restricted to the interval (=m/2,m/ 2)
where it is, indeed, one-to-one. So it has an inverse there, which we have graphed
in red the figure on the right.
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The inverse tangent function is denoted by arctan x. Since the domain and range of
the tangent and inverse tangent functions are interchanged, we have

e the domain of arctan x is the range of the restricted tan x: (—co, 00).
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e the range of arctan x is the domain of the restricted tanx: (—7m/2,71/2).

EXAMPLE 24.3. Again we have to be careful about calculating the composites of these
inverse functions. They are only inverses when the inputs are in the correct domains.
For example,
arctan(tan(7t/4)) = arctan(1) = /4.
But if we take a value outside of the restricted domain (—7/2,77/2) of the tangent
function
arctan(tan(37t/4)) = arctan(—1) = —n/4.
Or
arctan(tan(37)) = arctan(0) = 0.

The two functions do not always undo each other since the inverse tangent function
can only return values between —7t/2 and 7t/2.

We will concentrate only on the the three inverse functions discussed above. 1
will leave it to you to read about the other inverse trig functions in your text.

Evaluation Using Triangles

Drawing appropriate right triangles can help evaluate complicated expressions
involving the inverse trig functions.

EXAMPLE 24.4. Evaluate cos(arcsin x).

SOLUTION. Remember that arcsinx = 6 where 6 is just the angle whose sine is x. We

want the cosine of this same angle. So let’s draw a right triangle with angle # whose

sine is x. Since the sine function is % we can use the triangle below.

Pryt=1=y=V1-x2
y
Notice sinf = § = x. So arcsinx = 6. (6 is the angle whose sine is x.) So

V1— 2
cos(arcsinx) = cos(0) = % = % =v1-x2

EXAMPLE 24.5. Evaluate sec(arctan x).

SOLUTION. This time we draw a triangle whose tangent is x.

2=1+x=>z2=+1+22

1
So .
sec(arctan x) = sec(f) = 1= V122,
EXAMPLE 24.6. Evaluate sin(arccos2/5).

SOLUTION. This time we draw a triangle whose cosine is 2/5.

5
x
22 42 =52 = x = /52 — 22 = /2.
2
So
21
sin(arccos2/5) = sin(0) = g — g

YOU TRY IT 24.1. Evaluate sin(arctan x) and cos(arcsin3/4)).



Derivatives of arcsin x and arctan x

Surprisingly, it is relatively easy to determine the derivatives of the inverse trig
functions, assuming that they are differentiable. We will use implicit differentia-
tion (really just the chain rule in disguise) just as we did when we figured out the
derivative of In x.

Let’s first determine the derivative of y = arcsin x for —% <x< % We want to
find % First apply the inverse:

y = arcsin x
sin(y) = sin(arcsinx) = x.
Now take the derivative using implicit differentiation on the left:
Dy[sin(y)] = Dx[x]

d
cos(y)% =1

Solve for %'
dy 1 1

dx ~ cos(y)  cos(arcsinx)

But in Example 24.4 we found that cos(arcsin x) = v/1 — x2 so we have
dy 1 1

dx  cos(arcsinx) /1 — 2

That is

1
V1I—a2

The derivative of y = arctanx for -7 < x < 7 is determined in a similar

— (arcsinx) =

dx

fashion. We want to find %. First apply the inverse:
y = arctan x
tan(y) = tan(arctan x) = x.
Now take the derivative using implicit differentiation on the left:

Di[tan(y)] = Dx[x]

d
secz(y)ﬁ =1

Solve for %'
dy 1 1

dx ~ sec2(y)  sec?(arctanx)

But in Example 24.5 we found that sec(arctan x) = /1 + x2 so we have sec?(arctan x) =

1 + x2. Therefore

dy 1 1
dx ~ sec?(arctanx) 142
That is
d 1
%(arctanx) =17

YOU TRY IT 24.2 (Extra Credit). Determine the formula for the derivative of arccos x using the
method above. Show your work.

Keep going and find the derivatives of the remaining three inverse trig functions. Again
show your work.
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Chain Rule Versions

The chain rule versions of both derivative formulas are:

i(arcsinu) 1 du i(arctan u) = L du
1+ u?dx

dx T V1 - 2dx dx

EXAMPLE 24.7. Let’s use these formulas to find the derivatives of the following:

d 3 1 3 3€3x 3
a(arctane x):m'?)ex:m. (uzex)
d . 2 1 6x 2
— (arcsin 3x = b= ——. u = 3x
dx( ) 1— (3x2)2 V1 —9x% ( )
d 1 3 arctan 3x

“ ( earctan 33() _ earctan 3x .3 = €
dx 1+ 9x2 1+9x2 °
— (sin2x arctan 5x°) = 2 cos 2x arctan 5x~ + sin2x - ———— - 10x
dx 1+ 25x4
10x sin 2
= 2cos2x arctan 5x2 + M.
1+ 25x4
1 1 3

d . _ _
%(ln | arcsin 3x|) = 3=

arcsin3x /1 _9x2 (arcsin 3x)v/1 — 922

Dy(|arcsin(In3x)) = ~ 1 3= -t (u = In(3x))

-2 3~ xy/1- @)

YOU TRY IT 24.3. Find the derivatives of these functions:

% arctan(6x?)] = %[arcsin(\/})] =
%[arctan(ezx} = %[arcsin(arcsin x)] =

d d : sin x
ﬁ[arctan(ln |6x])] = %[arcsm(& )] =

d

a (62 arcsin x? ) _

dx

% [(arcsin 2x)(tan 5x2)] =

d ,
o (In | arctan Xt )

The answers are on the last page (on line) of this section.
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Logarithmic Differentiation

There are still types of functions that we have not tried to differentiate yet. Some-
times we can make use of our existing techniques and clever algebra to find
derivatives of very complicated functions. Logarithmic differentiation refers to
the process of first taking the natural log of a function y = f(x), then solving for
the derivative d—y On the surface of it, it would seem that logs would only make a
complicated funyétion more complicated. But remember that logs turn powers into
products and products into sums. That’s the key.

Let’s look at the Extra Credit problem from Exam II to illustrate the idea.

EXAMPLE 24.8. Use the chain rule and implicit differentiation along with logs to find
the derivative of y = f(x) = x*.

SOLUTION. We begin by taking the natural log of both sides and simplifying using
log properties.
X Pogers x1

Iny =Inx nx.
Remember we want to find Z—Z, so take the derivative of both sides (implicitly on the
left).
%(lny) = %(xlnx) = ; . % =1-Inx+x- % =In(x)+1
A7 Sl yfn(x) +1]
% Substitute  x (in(x) + 1]

In other words, we have shown that % (x*) = x*[In(x) + 1]. Neat! Easy!

Here are a couple more.
EXAMPLE 24.9. Find the derivative of y = (1 + x2)t@nx,
SOLUTION. Take the natural log of both sides and simplify using log properties.

tan x Powers

Iny = In(1+ x?) tan x In(1 + x2).

Take the derivative of both sides (implicitly on the left) and solve for %
d d 2
%(lny) == (tanxln(l +x ))
1 d
h % =sec? xIn(1+4 x?) + tan x - 1—&—7}{352
dy Solve 2 oy, 2xtanx
i {sec xIn(1+x%) + e
dy Substitute 2+ tan x 5 5y 2xtanx
I - In(1+ x%) sec” xIn(1+ x7) + T
d 2ytanx) _ 2\tanx 2 2y, 2xtanx '
Soa<ln(1+x) >—ln(1+x) sec”xIn(1+x7) + T . Not bad!

EXAMPLE 24.10. Find the derivative of y = (In x)x3.

SOLUTION. Be careful. This function is NOT the same as 1n(xx3) which would equal
x?In x. Instead, take the natural log of both sides and simplify using log properties.

Iny = In(In x)x3 Powers o In(In x). Do you see the difference when com-

pared to ln(x’(3)

d
Take the derivative of both sides (implicitly on the left) and solve for %
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g-%73x In(Inx) + x ey
1 dy Solve 2 x3
v dx y{3x ln(lnx)—i—xlnx

. 3
dy Substitute (In x)"3 {E’)Jc2 In(Inx) + ad }
xInx

Logs can also be used to simplify products and quotients.

2 5 2
-1 1
EXAMPLE 24.11. Find the derivative of y = ”TH

X

SOLUTION. Use logarithmic differentiation to avoid a complicated quotient rule
derivative Take the natural log of both sides and then simplify using log properties.

(x? —1)°V1+ a2
—In(M 2V TY
Iny n( iz

P
FOBLIOP 1 (22— 1)5 4 In(1 + 22)V2 — In(x* + 4)

RoBLIOP 51 (2 — 1) % In(1+ x%) — In(x* +4).

Take the derivative of both sides and solve for dy

dx’
1dy  10x  x 43
y dx  x2—1 1422 «x*+4
dy Solve 10x X 4x3
ax Y x2—1+1+x27x4+4}
dlSubsiitute (x2—1)5 1+x2|: 10x n x 453
dx xt+4 x2—1 1+x2 x*t+4

That would have been a real mess to do with the quotient rule (which would also
require the product rule and the chain rule).

Problems

The following questions will be on the lab tomorrow or are future WebWorK problems. Get
a head start.

1. Find the derivatives of the following functions. Use logarithmic differentiation where
helpful.

@ y=(sinx)* (b)) y=2""" (o) (sinx)*"*
(d) (arcsimx)x2 (e) (1 + %)x

2. Find the derivatives of these functions using the derivative formula for a general expo-
nential function that we developed before Exam II. (See Theorem 3.18 on page 194).

(@) 5-65  (b) 2%cotx  (0) "+ 7° (@) x*-4F

(e) For which values of x does x* - 4* have a horizontal tangent?



Answers.

0. Answers to YOU TRY IT 24.3 .
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d 2 1 12X d . 1 1 -1/2 1
2 (arctan(6x?)) = — 12y = — al - 2 -
o (arctan(6x”)) Tr36e 12 = Taem o (arcsin(v/x)) A2 NN
d 2x 262" d . . 1 1
— (arctan(e = — —— (arcsmifarcsin x = .
dx( ) 14 et dx( ( ) V/1— (arcsinx)?  /1— 2
d 1 1 1
— [arctan(l = — = .
gz aretan(n|ex|)] = T ey 6 O = ST an o))
d . sinxyy 1 sinx _ 6cosxesinX
ﬁ(arcsm(6e )) = W . (66 )(COS x) = W
1(32 arcsinxz) _ (62 arcsinxz) 0. 1 oy = 4xe?arcsina?
dx 1— (x2)2 V1—axt
_ 2 tan 5x2

= 2 _""_ 4 (arcsin2x)10x sec?(5x2)

d 2
— |arcsin 2x(tan 5x
dx [ ( )} 1 —4x2

4x3ex4+1

x4+1‘) _ 1 . 1 Lol g3 —
arctan X'l 14 (ex*+1)2 (arctan e¥*+1) (1 4 ¢2x*+2)

d
Ix (In|arctane

. . 1 dy . X COS X dy
= Ea— —_ . = = _
1.(a) Iny = In(sinx)* = xIn(sinx) = ) dx In(sinx) + snx

(sin x)*(In(sin x) + x cot x).
dy

dx

() Iny = Inx*™* = sinxInx = ;d—y = cosxlnx—l—(sinx)% = L = ysinx <cosxlnx+ sn;x)i

dx

(¢) Iny = l.n(sinx)smx = sinxIn(sinx) = i . % = cos xIn(sin x) + (sinx) Zi:;( = Z—‘Z =
(sin x)%™* cos x[In(sin x) + 1].

_ . X2 _ .2 . 1 4y .
(d) Iny = In(arcsinx)* = x“ In(arcsinx) = Y dx 2xIn(arcsin x) + x arcsiny Vi =32 =

&y _ (arcsin x)** ( 2xIn(arcsin x) + S SR
dx (arcsinx)v1—x2 )’

X p—
(e lny:ln(l—o—l) :xln(1+l):>1-d—y:ln(1+1)+m ! -—21:>
x x y dx x (1+%) x
1 dy _ n__ 1 1 dy _ L B _
1\* 1 1
(+5) () )

2.(a) %[56’“] —5.6%In6 = 5In6(6Y).

=Rl
N—

(b) %[2" cotx] = 2¥In2cotx — 2% csc? x = 2¥[In2 cot x — csc? x].
(c) di;[x’T + 7% = ™+ ¥ In .
) %[x‘1 ) =423 4" 4 x* 45 Ind = 3 4¥[4 + xIn4].

(¢e) From the previous part, the slope is 0 when x3 - 4*[4 4+ xIn 4] = 0. Therefore x = 0 or
4

4’
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