Graphing with Asymptotes

35.1  Vertical Asymptotes

Over the next few classes we will return to graphing functions. This time, besides
the usual critical points, local extrema, and inflections, we will also consider func-
tions that have vertical asymptotes (VA) that we discussed earlier in the term and
functions that have horizontal asymptotes. Recall our earlier definition:

DEFINITION 35.1. The function f(x) has a vertical asymptote (VA) at x = a if
lim f(x) =4coor —oo and/or lim f(x) = +ooor —oco.
x—at x—a-

. , 2
EXAMPLE 35.1. Find the VA’s of f(x) = X+.

X
SOLUTION. With rational functions we look to see where the denominator is 0 and

then take the appropriate (one-sided) limits. Here, we look at x — 1.

lim x? — 1 = +o0
=1t x—1 0+ ’

So we know that f(x) has a VA at x = 1. Checking the other limit,

lim x? — 1 _ —o00
—1-x—1 "0~
. 7 ./2 _
EXAMPLE 35.2. Find the VA’s of g(x) = 13310,

SOLUTION. This time, we look as x — 2.

2 _ _
lim 310 (G2 egsy =7
x—2+ x—2 x—2+4 x—2 x—2+

In fact, now that we have factored we see that the two-sided limit exists.
x243x—10 .

lim lim (x+5)(x—2) = lim (x+5)=7.
x—2 x—2 x—2 x—2 x—2+

So g(x) does not have a VA. Rather it has a removable discontinuity at x = 2.

DEFINITION 35.2. The function f(x) has a removable discontinuity at x = a if limy_, f(x)
exists (and is finite) but does not equal f(a).

EXAMPLE 35.3. Do a complete graph (including VA's) of f(x) = % (x#1)
SOLUTION. As usual, start with critical points.

2x(x —1) —x> x?2—-2x  x(x—2)

!
xX) = = = =0atx=0,2;, NIDx=1
R L e R
where NID means the point is not in the domain.
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Check concavity with the second derivative. After simplifying:

1! _ 2 . —
f (x)—m;éO, NID x = 1.

conc down conc up
-— NID +++

f! I

1

We have already found that there is a VA at x = 1. Plot the critical numbers; there
are no inflections: f(0) = 0 and f(2) = 4. Make sure to mark the VA in the graph.
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35.2  Horizontal Asymptotes

Now consider the function f(x) = xﬁil which is graphed below. It does not have

any vertical asymptotes but it does have a horizontal asymptote at y = 1.

So what do we mean when we say that f has a horizontal asymptote at y = 1?
Something like:

“As x — oo, f(x) gets close toy = 1"
“As x — —oo, f(x) gets close toy = 1"

We can see this by looking at a table of values:

X +1 | £10 | £100 | £1,000

x2 1 100 10,000 | 1,000,000
2+1 2 701 | 10,001 | 1,000,001

The following informal definition will be sufficient for our purposes.
DEFINITION 35.3 (Limits at Infinity). We say that

lim f(x)=1L

x—4oo

if we can make f(x) arbitrarily close to L by taking x sufficiently large. Similarly,

lim f(x)=M

X——00

if we can make f(x) arbitrarily close to M by taking x sufficiently large in magnitude but
negative.

DEFINITION 35.4. The line y = L is a horizontal asymptote (HA) for the graph of f(x) if
either EIE f(x)=Lor Em f(x)=L.
X o X —00

Pictures

Here are a few graphs of functions with horizontal asymptotes. Notice that the
function can cross a horizontal asymptote (but not a vertical one). Notice that if
y = L is a horizontal asymptote, then it means when x is large enough (in one
direction or the either) the function stays within a little horizontal corridor about
the line y = L...i.e., f(x) gets close to L.

It appears that limy_, o e* =0 It appears that lim, e * =0

Soy =0is HA fory = ¢* y=0isHAfory =e¢™*
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limy_, o = arctanx = —71/2 and limy_,o, = arctanx = 71/2

limy e f(x) =1soy =1is an HA for y = f(x)

y = £m/2 are HA’s for y = arctan x

Working with Limits at Infinity

Here’s a simple function f(x) = % As x gets large in magnitude it is easy to see
that f(x) approaches o.

x | £10 | £100 | £1,000 | £1,000,000

% +.1 | £.01 | £.001 £.000001

In other words we have the following

FACT 35.1. Let f(x) = %, then

1 1
Iim — =0and lim - =0.
x—00 X x——00 X

This means that y = 0 is an HA for f(x) = 1.
Most of the basic limit laws carry over for limits at infinity. So we can use them
to show: if r > 0 (even fractional values of r are fine), then

1 1Y A ,
lim — =1lim (-) =(lm -] =(0)" =0.
x—o0 x" x—o0 \ X xX—00 X

So, if ¢ is any constant, then

. c . 1
Iim —=c¢c-lim —=c¢-0=0.
x—oo xT x—oo x7

FACT 35.2. If r > 0, then

and, as long as x” is defined when x < 0, then

. c
lim — =0.
x——o0 x"

This fact makes sense; just think about it. If x gets large, then x” gets large (if
r > 0) so ;7 gets small.

There are two other limits that you ought to memorize, though you should
already know them from the graphs of these functions.

FACT 35.3.

lim ¢ =0and lim e ¥ =0.
X—r—00 X—00

35.3 Infinite Limits at Infinity

Many simple and familiar functions get very large in magnitude as x itself gets
large in magnitude We say that such functions have an infinite limit at infinity. A
couple of familiar examples include f(x) = x3 and g(x) = |x| as illustrated below.
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8(x) = [«] flo) =2

DEFINITION 35.5 (Infinite Limits at Infinity). If f(x) becomes arbitrarily large as x becomes
arbitrarily large, then we write
lim f(x) = oo.

X—00
If f(x) becomes arbitrarily large in magnitude but negative as x becomes arbitrarily large,
then we write

Jim £ =
Similar definitions are used for Em f(x) = o0 and Em f(x) = —oo0.
X——00 X——00

The End Behavior of Polynomials

Infinite limits at infinity describe the behavior of all polynomials of degree greater
than 0. The simplest examples are provided by functions of the form f(x) = x"
where 7 is a positive integer. Since positive powers of large numbers are large,

this means that for all n, xlgrolo x" = +oo. Limits at —oo are only slightly more
complicated. Since we are now looking at powers of large magnitude negative
numbers, the product will be either positive or negative depending on the number
of terms, but the magnitude will always be large. More specifically, when 7 is even
x" is always non-negative, so JCl_i>r£1°o x" = 4-c0. Since a product of an odd number of

negative numbers is odd, lim x" = —oo. This behavior is illustrated below for a
X——00
few odd and even powers of x.

¥i

Using these observations, it is not hard to show that when we have any polyno-
mial, its behavior as x — +oo is completely determined by its highest power. That
is if p(x) is a degree n polynomial p(x) = a,x" +a,_1x" ' + -+ + a;x + ag, then
xh_r& p(x) = xlgro\o a,x" and xgrzloo p(x) = XEIFOO anx". It is worth gathering all of
these observations together in a theorem, though they should seem quite intuitive

or natural.
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THEOREM 35.1 (Limits of Powers and Polynomials). Let 7 be a positive integer. Then

(1) If nis even, then lim x" = +ooand lim x" = 4o0.
X—00 X——00

(2) If nis odd, then lim x” = +c0oand lim x" = —oco.
X—»00 X——00

(3) If p(x) is a degree n polynomial, then xlgrc}o p(x) = Ylgrc}o apx" and lim p(x) =

X——00

lim a,x", where a,x" is the highest degree term.
X——00

Note: A polynomial does not have any horizontal asymptotes.

EXAMPLE 35.4 (Polynomial Limits at Infinity). A couple of simple examples illustrate the
ideas in the theorem. Let p(x) = 9x* — 2x + 1 and g(x) = —4x5 + 7x*> + 3. Then

lim p(x) = lim 9x* —2x +1 = lim 9x* = 4+
X—00 X—00 X—00

because the degree is 4 (even) and the leading coefficient is 9 (positive). Similarly

lim p(x) = lim 9x* —2x+1 lim 9x* = 40
X——00 X—>—00 X——00

because the degree is still even and the leading coefficient is 9 (positive). Now

lim g(x) = lim —4x° 4+ 7x% +3 = lim —4x° = —c0
X—00 X—00 X—00

because the degree is 3 (odd) and the leading coefficient is —3 (negative). Similarly

lim g(x) = lim —4x° 4+ 7% +3 = lim —4x° = 4o0
X——00 X——00 X——00

because the degree is 3 (odd) and the leading coefficient is —3 (negative) and the limit
is approaching negative infinity.

These are relatively easy...just think about the sign of the highest degree term as
X — +ooorx — —oo.

35.4 HA'’s and Rational Functions

The key to finding horizontal asymptotes for rational functions is to divide the
numerator and denominator by x to the degree (highest power of x) of the denominator.

_ 4yt -2x347

EXAMPLE 35.5. Find the HA's of f(x) = 3557

SOLUTION. We need to determine the limits as x — +oc0. Dividing by x* (the degree
of the denominator is 4)

axt—2347 . 4-247% 4040 4

li - - -
W3y 41 w3t 21 L 31040 3

Soy = % is an HA. What about as x — —o0?

L axt-2B847 o 4-24T0 g4

lim ﬁ: m ﬁ:,.

x——o0 3x* +2x% +1 x~>7003+ﬁ+g 3
3x2—2x

EXAMPLE 35.6. Find limy ;oo 35735

SOLUTION. Dividing by x? (the degree of the denominator is 3)
2 _ 3_2

im X2 gy o2 070
xS0 9x3 41 x——00 9 4 13

3
Soy = 0is an HA.

EXAMPLE 35.7. Find lim,—, e 252

xZ4x"
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SOLUTION. Dividing by x? (the degree of the denominator is 2)

453 -2 . dx — ,(22 . X
im = lim = lim = —oo0.
X—>—00 2x2+x X—>—00 2+%

x——00 2

There is no HA.
EXAMPLE 35.8. Find limy_,co %
SOLUTION. Dividing by x (the degree of the denominator is 1)

2 1/2 0
lim —~— = lim 22 = = Q.
x—o0 2x 41 X*}OOZ_A'_% 240

There is an HA at y = 0.

Dominant Powers Here are a couple of quick observations we can make about
a rational function % from these examples. The limits depend on the highest
degree terms in both the numerator and denominator. So we can focus on just

those terms. For example:

3 241 _ 3% 0
e ¥ 2x4 4 6x Taoted T T2 T2
Similarly
o234 2x2 41 o232
lim ————— = lim — = -.
x—eo  5x3 4 x x—00 5x3 5
Or
2232 4 x —1 L 2x3/2 C2xl/2
M er7 TR s TR s T

The general pattern is clear:

THEOREM 35.2 (Limits at Infinity for Rational Functions). Let p(x) and q(x) be polynomials.
p(x)

(1) If the degree of the numerator is less than the degree of the denominator, then lir£ q(T)
X— 00
0 and x =0 is a HA.
(2) If the degree of the numerator is the same as the degree of the denominator, then

px) _a . . a
A0 T b where a and b are the leading coefficients of p and g and x = j isa
A.

(3) If the degree of the numerator is larger than the degree of the denominator, then

p(x)

m —— = oo or —co depending on the highest powers and their coefficients in the
x—=Eoo (x)

polynomials p(x) and g(x). There is no HA.

EXAMPLE 35.9. Now we will use these observations to evaluate the following rational

functions
3t—1

m =
t+oo 13 —1

because the degree of the numerator is 1 and the denominator is 3. Next

i 204412 1
x40 4x3—2 T 4 2

because the degrees of the numerator and denominator are equal.

. bx®—x . Bx , 3
Iim ——— = lim — = lim 2x° = —oo0.
x5-001002 +1 x5-0010x2  x—-c0

Here the degree of the numerator is larger than the degree of the denominator.
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