
Trig Limits

Three Important Limits

In this section we will derive some important trig limits. Recall that a few days
ago, we used a table of values and a graph to evaluate the following limit:

THEOREM 11.1. lim
x→0

sin x
x

= 1.
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Figure 11.1: As x approaches 0, sin x
x

approaches 1.

YOU TRY IT 11.1. The limit above relates to the slope problem. Use the limit above to find
the slope of f (x) = sin x at x = 0.

We will give a proof of this a bit later. But for now, let’s use this limit to deter-
mine some other limits that will turn out to be important in our discussion of the
slope problem.

THEOREM 11.2. lim
x→0

1− cos x
x

= 0 and lim
x→0

cos(x)− 1
x

= 0.

Proof. Notice that this is an indeterminate limit of the form ‘ 0
0 .’ We will use Theo-

rem 11.1 by multiplying by a type of conjugate.

lim
x→0

1− cos x
x

Conjugate
= lim

x→0

1− cos x
x

· 1 + cos x
1 + cos x

= lim
x→0

1− cos2 x
x(1 + cos x)

= lim
x→0

sin2 x
x(1 + cos x)

= lim
x→0

sin x
x
· sin x

1 + cos x
Theorem 11.1

= 1 · 0
2

= 0.

Finally, notice that lim
x→0

cos(x)− 1
x

= −
(

lim
x→0

1− cos x
x

)
Above
= 0.

THEOREM 11.3. lim
x→0

tan x
x

= 1.

Proof. This, too, is an indeterminate limit of the form ‘ 0
0 .’ We will use Theo-

rem 11.1 again.

lim
x→0

tan x
x

= lim
x→0

sin x
cos x

x
= lim

x→0

sin x
x cos x

= lim
x→0

sin x
x
· 1

cos x
Theorem 11.1

= 1 · 1
1
= 1.
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The key element in all three limits is that the ‘angle’ that appears in the nu-
merator is exactly the angle that appears in the denominator. In each of these

limits, there is nothing special about the variable x. For example, lim
~→0

sin~
~

= 1 or

lim
~→0

1− cos~
~

= 0, where ~ represents some variable quantity is approaching 0.

Here’s an example:

lim
θ→0

sin 10θ

10θ
= 1

because as θ → 0 we also have 10θ → 0. Notice again that the ‘angle’ that appears
in the numerator, 10θ, is exactly the angle that appears in the denominator.

Examples and Variations

You should memorize the three limits above. They will be used in a variety of
situations.

EXAMPLE 11.1. (Make it so) Evaluate lim
x→0

sin 4x
x

.

SOLUTION. This is indeterminate, of the form ‘ 0
0 .’ The problem is that the ‘angle’

or ‘argument’ is not the same in the numerator and denominator. In the words of
Captain Picard of the starship USS Enterprise, “Make it so!" We want 4x in the denom-
inator, so if we multiply the denominator by 4, then we must multiply the numerator
by 4. “Let’s do it!"1 1 Gary Gilmore’s last words in Norman

Mailer’s The Executioner’s Song.

lim
x→0

sin 4x
x

= lim
x→0

4 sin 4x
4x

= 4 lim
x→0

sin 4x
4x

Theorem 11.1
= 4(1) = 4.

The limit is 4, not 1.

EXAMPLE 11.2. (Make it so) Evaluate lim
θ→0

tan 2θ

6θ
.

SOLUTION. This time we want 2θ in the denominator, so

lim
θ→0

tan 2θ

6θ
= lim

θ→0

tan 2θ

3 · 2θ
=

1
3
· lim

θ→0

tan 2θ

2θ

Theorem 11.3
=

1
3
(1) =

1
3

.

EXAMPLE 11.3. (Make it so) Evaluate lim
x→0

sin 2x
sin 3x

.

SOLUTION. This, too, is indeterminate, of the form ‘ 0
0 .’ To take advantage of Theo-

rem 11.1 we need to divide the numerator and denominator by x. So

lim
x→0

sin 2x
sin 3x

= lim
x→0

sin 2x
x

sin 3x
x

= lim
x→0

2 · sin 2x
2x

3 · sin 3x
3x

Theorem 11.1
=

2 · 1
3 · 1 =

2
3

.

EXAMPLE 11.4. (Make it so) Evaluate lim
x→0

tan2 3x
x

.

SOLUTION. Take advantage of Theorem 11.3 by rewriting.

lim
x→0

tan2 3x
x

= lim
x→0

tan 3x
x
· tan 3x = lim

x→0

3 tan 3x
3x

· tan 3x Theorem 11.1
= 3 · 0 = 0.

EXAMPLE 11.5. (Make it so) Evaluate lim
x→0

1− cos 4x
x

.

SOLUTION. Take advantage of Theorem 11.3 by rewriting.

lim
x→0

1− cos 4x
x

= lim
x→0

4(1− cos 4x)
4x

= 4 lim
x→0

1− cos 4x
4x

Theorem 11.2
= 4 · 0 = 0.
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The Squeeze Theorem

The proof of Theorem 11.1 depends on another useful result that is helpful in
calculating certain complicated limits.

THEOREM 11.4. (The Squeeze Theorem) Assume that f , g and h are functions such that
f (x) ≤ g(x) ≤ h(x) for all values of x near a, except perhaps at a itself. If lim

x→a
f (x) =

lim
x→a

h(x) = L, then lim
x→a

g(x) = L. In other words, all three limits are equal.
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Figure 11.2: As x approaches a, f (x) →
L and h(x)→ L, so g(x)→ L.

Proof sketch: Since f (x) ≤ g(x) ≤ h(x), this means g(x) is trapped between f (x)
and h(x). Since both f (x) and h(x) approach L as x approaches a, then g(x) must
approach a.

EXAMPLE 11.6. Here’s a made up example that illustrates the ideas. Suppose that we
have some function g(x) and that we know

cos x ≤ g(x) ≤ x2 + 1 (x 6= 0).

Determine lim
x→0

g(x). In this case we are lucky because the limits of the outer functions

in the inequality above are equal. Since limx→0 cos x = 1 and limx→0 x2 + 1 = 1, then
by the squeeze theorem the function in the middle has the same limit: lim

x→0
g(x) = 1

also.

EXAMPLE 11.7. Here’s another. Suppose g(x) satisfies

3x2 + 1 ≤ g(x) ≤ (x + 1)2.

Determine lim
x→1

g(x). This time the limits of the outer functions are equal to 4 Since

limx→1 3x2 + 1 = 4 and limx→1(x + 1) = 4. So by the squeeze theorem the function in
the middle has the same limit: lim

x→1
g(x) = 4.

EXAMPLE 11.8. The function sin 1
x is not defined at 0. We also saw from its graph that

lim
x→0

sin 1
x DNE. Using the graph, does sin 1

x have a VA or an DR at x = 0?

Since we are dealing with the sine function, it is still the case that

−1 ≤ sin 1
x ≤ 1 (x 6= 0).

Now consider a related function function g(x) = x2 sin 1
x . Show that lim

x→0
x2 sin 1

x = 0.

Figure 11.3: Left: The function sin 1
x .

Right: The function g(x) = x2 sin 1
x .

SOLUTION. There is no factoring or simplification that we can do. It’s not even an
indeterminate form. But what we can see is that since

−1 ≤ sin 1
x ≤ 1 (x 6= 0).

and since x2 ≥ 0, if we multiply through the inequality above by x2 we get

−x2 ≤ x2 sin 1
x ≤ x2 (x 6= 0).
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Notice that the two ‘outside’ functions have the same limit (namely 0) at 0. So let’s
apply the Squeeze Theorem where f (x) = −x2 and h(x) = x2. Then

lim
x→0

f (x) = lim
x→0
−x2 = 0 and lim

x→0
h(x) = lim

x→0
x2 = 0.

So we get to conclude the same about the middle function g(x):

lim
x→0

g(x) = lim
x→0

x2 sin 1
x = 0.

The Proof of a Key Trig Limit

To prove lim
θ→0

sin θ

θ
= 1, we will use a bit of trig and geometry. In particular we will

compare three areas that are determined by a unit circle centered at the origin. To
start, look at Figure 11.4.
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Figure 11.4: The sector area of the
circle has a smaller area than the
corresponding triangle.

In the large triangle, tan θ =
opp
adj

=
z
1
= z. So the triangle has height z = tan θ

and base 1, so its area is

Area(Big Triangle) = 1
2 (1)(z) =

1
2 tan θ.

Next, the sector area (see the right side of Figure 11.4) as a fraction of the entire

circle. The sector is
θ

2π
of the entire circle, so its area is

Area(sector) =
θ

2π
· π(1)2 =

θ

2
.
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Figure 11.5: The sector area of the circle
has a larger area than the correspond-
ing triangle.

The triangle within the sector has height y. But y = y
1 =

opp
hyp = sin θ. So the

small triangle has height y = sin θ and base 1, so its area is

Area(small triangle) = 1
2 (1)(y) =

1
2 sin θ.

Now we set up the Squeeze Theorem

Area(Big Triangle) ≥ Area(Sector) ≥ Area(small triangle)
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Using the equations worked out above, this translates to

tan θ

2
≥ θ

2
≥ sin θ

2

and multiplying by 2 and rewriting tan θ

sin θ

cos θ
≥ θ ≥ sin θ.

Taking reciprocals reverses the inequalities

cos θ

sin θ
≤ 1

θ
≤ 1

sin θ
.

Multiply through by sin θ to get

cos θ ≤ sin θ

θ
≤ 1.

Now take the limits as θ → 0 of the first and last functions,

lim
θ→0

cos θ = 1 and lim
θ→0

1 = 1.

So we can apply the Squeeze Theorem, and we conclude lim
θ→0

sin θ

θ
= 1 also.

EXAMPLE 11.9 (Review). Find the tangent slope of the curve y = f (x) = sin 3x at the
point (0, 0) on the curve by taking the limit of secant slopes. Then find the equation of
the tangent line there.

SOLUTION. Remember that the secant slopes of f at (0, 0) are given by

msec =
f (x)− f (0)

x− 0
=

sin 3x− sin 0
x− 0

=
sin 3x

x
.

So taking the limit as x → 0 we get

mtan = lim
x→0

msec = lim
x→0

sin 3x
x

= lim
x→0

3 sin 3x
3x

= 3.

So the slope of the tangent line is 3 and the point is (0, 0). The equation of the line is

y− 0 = 3(x− 0) or y = 3x.

EXAMPLE 11.10 (Review). Find the tangent slope of the curve y = f (x) = cos x− tan 2x
at the point (0, 1) on the curve by taking the limit of secant slopes.

SOLUTION. Check that f (0) = 1. The secant slopes of f at (0, 1) are given by

msec =
f (x)− f (0)

x− 0
=

(cos x− tan 2x)− (1− 0)
x− 0

=
(cos x− tan 2x)− 1

x
.

So taking the limit as x → 0 we get

mtan = lim
x→0

msec = lim
x→0

(cos x− tan 2x)− 1
x

= lim
x→0

(cos x− tan 2x)− 1
x

= lim
x→0

(cos x− 1)− tan 2x)
x

= lim
x→0

cos x− 1
x

− tan 2x
x

= lim
x→0

cos x− 1
x

− 2 tan 2x
2x

= −2.

The slope of the tangent line is −2 and the point is (0, 1). The equation of the line is

y− 1 = −2(x− 0) or y = −2x + 1.
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YOU TRY IT 11.2. Practice with trig limits. Show your work!

(a) lim
x→0

sin x
12x

(b) lim
x→0

sin(−8x)
2x

(c) lim
x→0

tan(−2x)
x

(d) lim
x→0

tan(5x)
sin(3x)

(e) lim
x→0

1− cos2(3x)
x(1 + cos(3x)

(f ) lim
x→0

2 tan2 x
x2

(g) lim
x→0

2 tan2 x
x

(h) lim
x→π/2

sin x
x

Answers: 1
12 ; −4; −2; 5

3 ; 0; 2; 0; 2
π .


