
Application: Arc Length

7.1 The General Problem

The Riemann integral has a wide variety of applications. In this section, using the
‘subdivide and conquer’ strategy we will show how it can be used to determine
the lengths of certain curves.

EXAMPLE 7.1. Verizon is hanging fiber optic cable around Geneva. It wants to know
how much cable it will need. Since the cable must be hung with some slack (why?),
the engineers can’t simply measure the distance between the poles to know how much
cable to use.

Figure 7.1: A hanging chain forms a
catenary. http://en.wikipedia.org/
wiki/Catenary

The curve that an idealized hanging chain or cable assumes when supported at its
ends and acted on only by its own weight is called a catenary. The equation for the
graph of a catenary curve is a hyperbolic cosine function

a cosh
( x

a

)
=

a
2
(ex/a + e−x/a),

where a is a constant. How can Verizon use this equation to find the length of the
cable it needs?

Let’s try to attack this problem in a more general fashion. Suppose y = f (x) is
a continuous function on the closed interval [a, b]. Find the length of the graph of
y = f (x) on this interval. This length is called the arc length of the curve.

Think about how we approached the area problem. We used the only figures for
which we had an area formula (rectangles) and used those figures to approximate
the area under a curve. Well, the only curve whose length we are certain of is a
straight line segment.1 If the segment has endpoints (x1, y1) and (x2, y2), then the 1 You might protest that you know the

circumference of a circle: 2πr. But why
is that formula true?

length of the segment is given by the distance formula

Segment Length =
√
(x2 − x1)2 + (y2 − y1)2.

So somehow we must use line segments (the only curves we know how to mea-
sure) to obtain the length of a more general continuous curve.

Well, let’s do the usual thing: ‘subdivide and conquer.’ Suppose f is continuous
on [a, b]. Given a ruler, we might mark off successive points Q1, Q2, . . . , Qn along
the curve and take the resulting polygonal arc as an approximation to the curve
(see Figure 7.2). We could measure the length of each segment of the polygonal arc
with our ruler (or the distance formula) and then summing these values together
we would have an approximation of the length of the curve. This idea (and the
lack of a precise definition of length for curves) motivates the following process.

Assume that f is continuous over the closed, bounded interval [a, b]. Let P =

{x0, x1, . . . , xn} be a regular partition of [a, b] into n equal width subintervals. For
i = 1 to n let Qi = (xi, f (xi)) be the corresponding set of points on the graph
of f . Then the polygonal arc from Q0 to Qn is just the sequence of line segments

http://en.wikipedia.org/wiki/Catenary
http://en.wikipedia.org/wiki/Catenary


math 131 application: arc length 2

x0 = a x1 xi−1 xi xn = b

....................................................................

..........
...........
............
................

..............................................................................................................................................................................................................................................................
...........
..........
.........
.........
.........
........
........
........
........
........
........
........
........
........
.........
.........
.........
..........
............
...................................................................................................................................................................................

............
..........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
.........
.........
..........
...........
.................................................................................................................................................................................................................................................................

........................
........................

........................
........................................................................................................................................................................................................................................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........................................................

..................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..............................................................................................................................................................................................................................................

..

..

..

..

..

..

..

∆x

f (xi)− f (xi−1)
Q0

Q1

Qi−1

Qi

Qn•
•

•
•

• •

•

•

•

•

•

Figure 7.2: A curve y = f (x) and
a polygonal approximation using a
regular partition.

Q0Q1, Q1Q2, . . . , Qn−1Qn. The length of this polygonal arc is just the sum of the
lengths of the individual segments. Using the Pythagorean theorem the length of
the ith segment is

Length(Segment i) =
√
(xi − xi−1)2 + [ f (xi)− f (xi−1)]

2. (7.1)

We can simplify (7.1) in two ways. As usual, we let ∆x = xi − xi−1. Next, by the
Mean Value Theorem (yet once again!), if we assume that f is also differentiable on
[a, b], then

f (xi)− f (xi−1)

xi − xi−1
= f ′(ci)

for some point ci between xi−1 and xi. Consequently,

f (xi)− f (xi−1) = f ′(ci) · [xi − xi−1] = f ′(ci)∆x.

Making both of these changes to (7.1) we get

Length(Segment i) =
√
(∆x)2 + [ f ′(ci)∆x]2. =

√
1 + [ f ′(ci)]

2∆x. (7.2)

Adding the lengths of all n line segments together we have

Length of Curve ≈
n

∑
i=1

Length(Segment i) =
n

∑
i=1

√
1 + [ f ′(ci)]

2 · ∆x.

Notice that we now have a Riemann sum! To improve the approximation we do
the standard thing: We let the number of polygonal pieces get large and take the
limit. We find

Length of Curve = lim
n→∞

n

∑
i=1

√
1 + [ f ′(ci)]

2 · ∆x =
∫ b

a

√
1 + [ f ′(x)]2 dx.

To be certain that this limit of the Riemann sums is, in fact, the definite integral we
need to know that √

1 + ( f ′(x))2

is continuous. It will be, if we assume that f ′(x) is continuous. With these condi-
tions, we find

THEOREM 7.1 (Arc Length Formula). If f is differentiable and f ′ is continuous on the closed
interval [a, b], then the arc length of f on [a, b] is

Arc Length of f =
∫ b

a

√
1 + [ f ′(x)]2 dx.

EXAMPLE 7.2. Find the arc length of f over [2, 6] for f (x) = 4
3 x3/2.
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SOLUTION. First determine the derivative: f ′(x) = 2x1/2 on [2, 6]. So by Theorem 7.1

Arc Length of f =
∫ b

a

√
1 + [ f ′(x)]2 dx =

∫ 6

2

√
1 + (2x1/2)2 dx

=
∫ 6

2

√
1 + 4x dx

=
2(1 + 4x)3/2

12

∣∣∣∣6
2

=
(125− 27)

6
=

49
3

.

Notice that we used a ‘mental adjustment’ in the integration: u = 1 + 4x.

EXAMPLE 7.3. Find the arc length of f over [0, π/4] for f (x) = ln(cos x).

SOLUTION. Determine the derivative f ′(x) = 1
cos x · (− sin x) = − tan x on [0, π/4]. So

by Theorem 7.1

Arc Length of f =
∫ b

a

√
1 + [ f ′(x)]2 dx =

∫ π/4

0

√
1 + tan2 x dx

=
∫ π/4

0

√
sec2 x dx

=
∫ π/4

0
sec x dx

= ln | sec x + tan x|
∣∣∣π/4

0

= ln(
√

2 + 1)− ln 1

= ln(
√

2 + 1).

EXAMPLE 7.4 (Circumference of a Circle). Find the arc length (circumference) of a circle
of radius r.

SOLUTION. To make things easy we will assume that the circle is centered at the
origin so that its equation is f (x) =

√
r2 − x2 on the interval [−r, r]. Actually this is

the equation for the upper semi-circle of radius r. We’d need to use the negative root
to get the lower half of the circle. Ok, we can deal with that by simply doubling the
answer.

The derivative

f ′(x) =
2
2 (−2x)√
r2 − x2

= − x√
r2 − x2

and is not defined at r and −r where the denominator is 0. To avoid this, let’s use
one-twelfth of a circle (30◦) by restricting the domain of f to

[
0, r

2
]
. See Figure 7.3. r

2 r
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Figure 7.3: One-twelfth of a circle (30◦)
of radius r.

Since we are using only one-twelfth of the circle, we need to multiply the answer
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by 12, so

Circumfrence of Circle = 12
∫ r/2

0

√
1 +

x2

r2 − x2 dx

= 12
∫ r/2

0

√
(r2 − x2) + x2

r2 − x2 dx

= 12
∫ r/2

0

√
r2

r2 − x2 dx

= 12
∫ r/2

0

r√
r2 − x2

dx

= 12r arcsin
( x

r

) ∣∣∣∣r/2

0

= 12r
[

arcsin
(

1
2

)
− arcsin(0)

]
= 12r

(π

6

)
= 2πr.

Awesome! We have now proven that the circumference of a circle of radius r is 2πr.
Earlier we showed that the volume of a sphere of radius r is 4

3 πr3. Interestingly, we
have not yet shown that the area of a circle of radius r is πr2. The reason for this is
that to determine the area we need to calculate∫ r

−r

√
r2 − x2 dx

but we do not yet know an antiderivative of
√

r2 − x2. (Look it up in a table! Find the
area of a circle using this.)

EXAMPLE 7.5 (Length of a Line Segment). Our arc length formula better work for the
length of an ordinary line segment. Let’s check. Find the length of the segment be-
tween (3, 4) and (8,−6).

SOLUTION. Since the segment is part of a non-vertical line, its equation has the form
y = f (x) = mx + b, so f ′(x) = m. The slope of the segment is

m =
4− (−6)

3− 8
=

10
−5

= −2.

Using Theorem 7.1 we find

Arc Length of Segment =
∫ b

a

√
1 + [ f ′(x)]2 dx = 12

∫ 8

3

√
1 + (2)2 dx

= 12
∫ 8

3

√
5 dx

=
√

5x
∣∣∣∣8
3

=
√

5(8− 3)

= 5
√

5.

Using the distance formula, the length of the segment is√
(8− 3)2 + (−6− 4)2 =

√
25 + 100 =

√
125 = 5

√
5,

which is the same answer we got using the arc length formula. Phew!

EXAMPLE 7.6 (Simplifying). Let f (x) = 1
10 x5 + 1

6 x−3 on [1, 2]. Find the arc length.
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SOLUTION. Ok, time to ’fess up. There are not many arc length integrals we can do.
This is one of them, but it requires some algebraic manipulation. Once you see this
you should recognize similar integrals.

The derivative is
f ′(x) =

1
2

x4 − 1
2

x−4.

Notice that the exponents are negatives of each other. This is important because when
we square f ′(x),

[ f ′(x)]2 =

(
1
2

x4 − 1
2

x−4
)2

=
1
4

x8 − 1
2
+

1
4

x−8,

We get a constant of − 1
2 for the middle term. Consequently, when we add one to this,

we get 1
2 for the middle term,

1 + [ f ′(x)]2 = 1 +
1
4

x8 − 1
2
+

1
4

x−8 =
1
4

x8 +
1
2
+

1
4

x−8 =

(
1
2

x4 +
1
2

x−4
)2

,

which is again a perfect square. Now we are ready to calculate the arc length using
Theorem 7.1 we find

Arc Length =
∫ b

a

√
1 + [ f ′(x)]2 dx =

∫ 2

1

√(
1
2

x4 +
1
2

x−4
)2

dx

=
∫ 2

1

1
2

x4 +
1
2

x−4 dx

=
1
10

x5 − 1
6

x−3
∣∣∣∣2
1

=

(
32
10
− 1

48

)
−
(

1
10
− 1

6

)
=

779
240

.

Messy, but doable! (Notice the similarity between the original function f and the
antiderivative of

√
1 + [ f ′(x)]2 which is characteristic of this type of problem.)

It’s a sad fact, arc lengths involve complicated integrands so without additional
integration methods (coming soon!) there are not many arc lengths that we can
compute. Here are a few more we’d like to do.

EXAMPLE 7.7. What about the arc length of a parabola, say f (x) = x2 on [0, 1]. Check
that

Arc Length =
∫ 1

0

√
1 + 4x2 dx,

but we do not yet have an antiderivative for this problem. Similarly If g(x) = sin x on
[0, π], then

Arc Length =
∫ π

0

√
1 + cos2 x dx.

Or if f (x) = ex on [0, 1], then

Arc Length =
∫ 1

0

√
1 + e2x dx.

If you know how to use Wolfram Alpha, you might try these problems. But for the
moment, we are stuck!

YOU TRY IT 7.1. Find the arc lengths of the following functions over the given intervals.

(a) f (x) = 1
3 x3/2 on [0, 8]. (Answer: 8

3 (2
3/2 − 1).)

(b) f (x) = x4

4 + 1
8x2 on [1, 2]. (Answer: 123

32 .)

(c) g(x) = x3 + 1
12x on [1, 3]. (Answer: 469

18 .)

(d) h(x) = cosh x on [0, ln 2]. Remember, cosh x = 1
2 ex + 1

2 e−x. (Answer: 3
4 .)
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YOU TRY IT 7.2. Here are few additional problems

(a) Find the exact arc length of f (x) = 5− 2x3/2 on the interval [0, 11]. (Answer: 74).

(b) Find the arc length of y = 1
8 x4 + 1

4 x−2 on the interval [1, 2]. Simplify the integrand!
(Answer: 33

16 )

(c) Find the arc length of f (x) = ln sec x on [0, π/4]. Use a trig identity! (Answer:
ln(
√

2 + 1))

YOU TRY IT 7.3 (Extra Credit). Solve the problem in Example 7.1 on the interval [−a, a].
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