Math 331: Composition and Integrability

Theorem (Composition and Integrability). Suppose that f is integrable on [a, b] and that $c \le f(x) \le d$ for all $x \in [a, b]$. Assume further that g is continuous on [c, d]. Then the composite $g \circ f$ is integrable on [a, b].

Examples

Proof: Why would this proof be easy if both f and g were continuous? The proof is a bit complicated notationally. We will use Theorem 3.4.9, so let $\epsilon > 0$. (Review the Sup Lemma before continuing.)

*ロ * * ● * * ● * * ● * ● * ● * ●

b) Choose $\epsilon' = \frac{\epsilon}{b-a+K} > 0$ Fix the typo on your sheet. (We'll see why later.) g is uniformly continuous on [c, d] by

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

b) Choose $\epsilon' = \frac{\epsilon}{b-a+K} > 0$ Fix the typo on your sheet. . (We'll see why later.) g is uniformly continuous on [c, d] by Theorem 2.6.4 (Unif Cont Thm).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

c) So there is a $\delta' > 0$ so that whenever $s, t \in [c, d]$ and $|s - t| < \delta'$, then

b) Choose $\epsilon' = \frac{\epsilon}{b-a+K} > 0$ Fix the typo on your sheet. . (We'll see why later.) g is uniformly continuous on [c, d] by Theorem 2.6.4 (Unif Cont Thm).

c) So there is a $\delta' > 0$ so that whenever $s, t \in [c, d]$ and $|s - t| < \delta'$, then $|g(s) - g(t)| < \epsilon$.

[And for technical reasons, we will want to choose $\delta < \epsilon'$. So let $\delta = \min\{\delta', \epsilon'\}$.]

d) Next, there exists a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] so that $U(P, f) - L(P, f) < \delta^2$ by

(日) (日) (日) (日) (日) (日) (日) (日)

b) Choose $\epsilon' = \frac{\epsilon}{b-a+K} > 0$ Fix the typo on your sheet. . (We'll see why later.) g is uniformly continuous on [c, d] by Theorem 2.6.4 (Unif Cont Thm).

c) So there is a $\delta' > 0$ so that whenever $s, t \in [c, d]$ and $|s - t| < \delta'$, then $|g(s) - g(t)| < \epsilon$.

[And for technical reasons, we will want to choose $\delta < \epsilon'$. So let $\delta = \min\{\delta', \epsilon'\}$.]

d) Next, there exists a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] so that $U(P, f) - L(P, f) < \delta^2$ by Theorem 3.4.9 (Fact 5).

e) Now we will show that

$$U(P,g\circ f)-L(P,g\circ f)<\sum_{i=1}^n [M_i(g\circ f)-m_i(g\circ f)](x_i-x_{i-1})<\epsilon.$$

To do this, we separate the set of indices of the partition P into two disjoint sets. On the first set we make $M_i(g \circ f) - m_i(g \circ f)$ small and on the second set we make $\sum (x_i - x_{i-1})$ small. Let

$$A = \{i: M_i(f) - m_i(f) < \delta\} \quad \text{and} \quad B = \{i: M_i(f) - m_i(f) \ge \delta\}.$$

If $i \in A$ and $x, y \in [x_{i-1}, x_i]$, then explain why:

$$|f(x)-f(y)| \leq M_i(f)-m_i(f) < \delta.$$

e) Now we will show that

$$U(P,g\circ f)-L(P,g\circ f)<\sum_{i=1}^n [M_i(g\circ f)-m_i(g\circ f)](x_i-x_{i-1})<\epsilon.$$

To do this, we separate the set of indices of the partition P into two disjoint sets. On the first set we make $M_i(g \circ f) - m_i(g \circ f)$ small and on the second set we make $\sum (x_i - x_{i-1})$ small. Let

$$A = \{i: M_i(f) - m_i(f) < \delta\} \quad \text{and} \quad B = \{i: M_i(f) - m_i(f) \ge \delta\}.$$

If $i \in A$ and $x, y \in [x_{i-1}, x_i]$, then explain why:

$$|f(x)-f(y)| \leq M_i(f)-m_i(f) < \delta.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Sup Lemma.

f) So if
$$x, y \in [x_{i-1}, x_i]$$
, then
 $|(g \circ f)(x) - (g \circ f)(y)| = |g(f(x)) - g(f(y))| < \epsilon'$ by Step

f) So if
$$x, y \in [x_{i-1}, x_i]$$
, then
 $|(g \circ f)(x) - (g \circ f)(y)| = |g(f(x)) - g(f(y))| < \epsilon'$ by Step (c)

g) So $M_i(g \circ f) - m_i(g \circ f) \leq \epsilon'$ by

f) So if
$$x, y \in [x_{i-1}, x_i]$$
, then
 $|(g \circ f)(x) - (g \circ f)(y)| = |g(f(x)) - g(f(y))| < \epsilon'$ by Step (c)

- **g)** So $M_i(g \circ f) m_i(g \circ f) \le \epsilon'$ by Sup Lemma.
- h) Adding we get (justify the three inequalities)

$$\begin{split} \sum_{i \in A} [M_i(g \circ f) - m_i(g \circ f)](x_i - x_{i-1}) &\leq \sum_{i \in A} \epsilon'(x_i - x_{i-1}) \\ &\leq \sum_{i=1}^n \epsilon'(x_i - x_{i-1}) \\ &\leq \epsilon'(b-a) \end{split}$$

*ロ * * ● * * ● * * ● * ● * ● * ●

f) So if
$$x, y \in [x_{i-1}, x_i]$$
, then
 $|(g \circ f)(x) - (g \circ f)(y)| = |g(f(x)) - g(f(y))| < \epsilon'$ by Step (c)

- **g)** So $M_i(g \circ f) m_i(g \circ f) \leq \epsilon'$ by Sup Lemma.
- h) Adding we get (justify the three inequalities)

$$\begin{split} \sum_{i \in A} [M_i(g \circ f) - m_i(g \circ f)](x_i - x_{i-1}) &\leq \sum_{i \in A} \epsilon'(x_i - x_{i-1}) \\ &\leq \sum_{i=1}^n \epsilon'(x_i - x_{i-1}) \\ &\leq \epsilon'(b-a) \end{split}$$

*ロ * * ● * * ● * * ● * ● * ● * ●

Step (g), adding more non-negative terms, telescope

i) What if $i \in B$? Then $\frac{M_i(f) - m_i(f)}{\delta} \ge 1$ because

i) What if $i \in B$? Then $\frac{M_i(f) - m_i(f)}{\delta} \ge 1$ because by definition of *B*, $M_i(f) - m_i(f) \ge \delta$.

So (justify each inequality)

$$\begin{split} \sum_{i \in B} \mathbf{1}(x_i - x_{i-1}) &\leq \sum_{i \in B} \left(\frac{M_i(f) - m_i(f)}{\delta} \right) (x_i - x_{i-1}) \\ &\leq \sum_{\text{all } i} \left(\frac{M_i(f) - m_i(f)}{\delta} \right) (x_i - x_{i-1}) \\ &= \frac{U(P, f) - L(P, f)}{\delta} < \delta \leq \epsilon'. \end{split}$$

i) What if $i \in B$? Then $\frac{M_i(f) - m_i(f)}{\delta} \ge 1$ because by definition of *B*, $M_i(f) - m_i(f) \ge \delta$.

So (justify each inequality)

$$\begin{split} \sum_{i \in B} \mathbb{1}(x_i - x_{i-1}) &\leq \sum_{i \in B} \left(\frac{M_i(f) - m_i(f)}{\delta} \right) (x_i - x_{i-1}) \\ &\leq \sum_{\text{all } i} \left(\frac{M_i(f) - m_i(f)}{\delta} \right) (x_i - x_{i-1}) \\ &= \frac{U(P, f) - L(P, f)}{\delta} < \delta \leq \epsilon'. \end{split}$$

Step (i) above, adding more non-negative terms, Definition of U(P) and L(P).

j) By part (a):

$$egin{aligned} M_i(g \circ f) &- m_i(g \circ f) \leq \max{\{g(t) : t \in [c,d]\}} - \min{\{g(t) : t \in [c,d]\}} \ &= \mathcal{K} \end{aligned}$$

so (justify)

$$egin{aligned} &\sum_{i\in B} [M_i(g\circ f)-m_i(g\circ f)](x_i-x_{i-1}) \leq \sum_{i\in B} \mathcal{K}(x_i-x_{i-1}) \ &= \mathcal{K}\sum_{i\in B} \mathbb{1}(x_i-x_{i-1}) < \mathcal{K}\epsilon'. \end{aligned}$$

j) By part (a):

$$egin{aligned} M_i(g\circ f)-m_i(g\circ f)&\leq \max\left\{g(t):t\in [c,d]
ight\}-\min\{g(t):t\in [c,d]
ight\}\ &=\mathcal{K} \end{aligned}$$

so (justify)

$$\sum_{i\in B} [M_i(g\circ f) - m_i(g\circ f)](x_i - x_{i-1}) \leq \sum_{i\in B} K(x_i - x_{i-1}) \ = K \sum_{i\in B} 1(x_i - x_{i-1}) < K\epsilon'.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

by definition of B, $M_i(f) - m_i(f) \ge \delta$.

So (justify each inequality)

$$\begin{split} \sum_{i \in B} \mathbf{1}(x_i - x_{i-1}) &\leq \sum_{i \in B} \left(\frac{M_i(f) - m_i(f)}{\delta} \right) (x_i - x_{i-1}) \\ &\leq \sum_{\text{all } i} \left(\frac{M_i(f) - m_i(f)}{\delta} \right) (x_i - x_{i-1}) \\ &= \frac{U(P, f) - L(P, f)}{\delta} < \delta < \epsilon'. \end{split}$$

So (justify each inequality)

$$\begin{split} \sum_{i \in B} \mathbb{1}(x_i - x_{i-1}) &\leq \sum_{i \in B} \left(\frac{M_i(f) - m_i(f)}{\delta} \right) (x_i - x_{i-1}) \\ &\leq \sum_{\text{all } i} \left(\frac{M_i(f) - m_i(f)}{\delta} \right) (x_i - x_{i-1}) \\ &= \frac{U(P, f) - L(P, f)}{\delta} < \delta < \epsilon'. \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Use Step (h) above to justify the last step.

j) Now recombine all the indices:

$$U(P, g \circ f) - L(P, g \circ f) = \sum_{i \in A} [M_i(g \circ f) - m_i(g \circ f)](x_i - x_{i-1})$$

+
$$\sum_{i \in B} [M_i(g \circ f) - m_i(g \circ f)](x_i - x_{i-1})$$

$$\leq \epsilon'(b - a) + K\epsilon'$$

=

j) Now recombine all the indices:

$$U(P, g \circ f) - L(P, g \circ f) = \sum_{i \in A} [M_i(g \circ f) - m_i(g \circ f)](x_i - x_{i-1}) + \sum_{i \in B} [M_i(g \circ f) - m_i(g \circ f)](x_i - x_{i-1}) \leq \epsilon'(b - a) + K\epsilon' =$$

$$=\epsilon'(b-a+K)<rac{\epsilon}{b-a+K}(b-a+K)=\epsilon$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

So $g \circ f$ is integrable by Theorem 3.4.9.