Math 331 Homework: Day 4

Quote of the Day

For brevity and in order not to weary the reader I suppress the proofs of these theorems which
follow immediately from the definitions of the previous section. Dedekind

Review Section 1.2. Make sure to memorize the definition of Dedekind cut, upper bound, and least

upper bound. Look ahead to the first part of Section 1.3 for the Field Axioms.

Hand In: Due Wednesday

Read all parts of all problems. I will add a few more problems to this set from Section 1.3.

1.
2.

Qo

Problem 1.2.3.

Theorem: Assume that A is an upper bound for a subset S in R. X is the least upper bound of S if
and only if for any real number 3 < A, there is a real number « € S such that 5 < «. Aysmel, Abigael,
Ruiqgian, Stuart, Ryo prove =. Tianrui, Ivy, Jena, Caroline, Kelcie prove <.

Let « be a cut. By definition of cut, there is s € Q so that s ¢ .

(a) Everyone: Prove: If p € o, then p < s.

(b) Aysmel, Abigael, Ruigian, Tianrui, Ivy: Determine whether a® = {r € Q : 7 ¢ a} is a cut. Prove
your answer. (I used part (a).)

(¢) Jena, Caroline, Kelcie, Stuart, Ryo: Determine whether a— = {—q : ¢ € a} is a cut. Prove your
answer. (I used part (a).)

Problem 1.2.6. Problem 2 above may be helpful here.

Problem 1.2.7. Prove that the irrationals are dense. You may assume that 1 < V2.

Problem 1.2.8. Greatest lower bounds in R can be viewed as the “mirror images” of least upper bounds.

(a) (Generalization) Let (A, <) be any partially ordered set and let S be a subset of A. Define the terms
lower bound of S and greatest lower bound of S.

(b) Prove that if S has a greatest lower bound A, then it is unique.

Problem 1.2.13. Jena, Caroline, Ruigian, Tianrui, Ivy do part (a); Kelcie, Stuart, Ryo, Aysmel, Abigael
do (b).

These extra credit problems may be done with a partner. (Hand in only 1 copy with with both your names.)
Volunteer to present them!

9.

10.

11.

Bonus Challenge. X be a non-empty set. Recall that P(X) is the power set of X, the set of all subsets
of X. Consider the partially ordered set (P(X), C). Prove that every non-empty subset K of P(X) has
a greatest lower bound (using your definition above). Hint: Consider what we did to find the least upper
bound of K. What might you try for the greatest lower bound?

Bonus Challenge. Prove: If X is totally ordered, then X satisfies then the law of trichotomy. (See
page 70 in Chapter Zero.)

Bonus Challenge. The rational numbers 1 and 2 are the real numbers (cuts) defined by One =
{€Q]qg< 1} and Two = {p € Q | p < 2}. Prove (using our definition of cut addition) that:
One + One = Two. Hint: Remember this a set equality you are trying to prove.



Answers

Problems

1. Suppose that A =1lub(A). Let B = {ka | a € A}, where k > 0.
(a) Show that kX is an upper bound for the set B.

Proof: Since ) is an upper bound for A, then Va € A, we have a < A. Since k > 0, then Vka € B
we have ka < kA. So kX is an upper bound for B.

(b) Show that kX is the least upper bound for B.

By contradiction:  Suppose that v were another upper bound for B with v < kA. Then Vka € B
we have ka <y < kX. So Va € A, we have a < 7 < A. But then v/k is a smaller upper bound for A
than A which contradicts that A is lub (A).

(¢) What can happen if k < 0?7
If £ < 0 then a < X means ka > kX and k) is not an upper bound for B. The proof above fails.

2. Theorem: Assume that A is an upper bound for a subset S in R. X is the least upper bound of S if and
only if for any real number 8 < A, there is a real number o € S such that § < .

= (by contradiction):  Given A = lub(S). Assume that there is some number 8 < A and that
there is nmo element « in S such that § < a. Then Va € S we have a < 5. So (5 is an upper bound
for S and § < A. This contradicts that A is lub(S5).

< (by contradiction):  Given: For any real number 8 < A, there is a real number a € S such
that 8 < a. Show A = lub(S). Let v be another upper bound for S with v < A. Then by the given
assumption, da € S so that v < . This contradicts that « is an upper bound for S.

3. Let a be a cut. By definition of cut, there is s € Q so that s ¢ a.
(a) Prove: If p € o, then p < s.

Proof: Assume not. Then either p = s (which contradicts that p € a and s € a®) or p > s.
But if p > s and « is a cut and s € Q, then by part (ii) of the definition of cut, s € a which
contradicts that s € a©.

(b) Determine whether o = {r € Q : r ¢ a} is a cut. Prove your answer.

By contradiction:  Assume o is a cut. From part (a) we know that 3s € o and p € o with

p < s. But this contradicts part (ii) of the definition of a® being a cut since p is a rational that is
both not in a® and less than s, with s € a“.

(¢) Determine whether a— = {—¢q : ¢ € a} is a cut. Prove your answer.

By contradiction:  Assume a_ is a cut. Since « is a cut, there is s € Q so that s ¢ «. Then by
definition, —s ¢ «_. Now let p € o (this implies that —p € a_). Then by part (a), p < s. But p < s
implies —s < —p. So if a_ were a cut, then —s € a_. Contradiction.

4. Let T and V be sets of real numbers with least upper bounds A; and g, respectively. Consider the set
S={r+v|7eT, veV} Provethat A\ + Ay = lub(9).

To use problem 2, first show that A\; + A2 is an upper bound for S. Let 0 € S. Then 0 =7+ v
forsome 7 € Tandv € V. Then 7 < A\ =1lub(T) and v < Ag =lub(V),s0 0 =74+ v < A1 + As.
Therefore, A\; + A2 is an upper bound for S.

Now use problem 2. Let 8 be any number smaller than Ay + Ao, i.e., let § < Ay + A3. Show S is
not an upper bound for S. Let 6 = Ay + Ay — 3. Then § > 0 and 8 = A\; + A2 — §. By problem
3, since Ay = lub(T) there is a 7" € T so that 7/ > \; — g and a v/ € V so that v/ > Ay — %. Let
o=7+1veS Theno=7+v >\ —g—l—)\g—g:ﬁ, so (3 is not an upper bound for S.

Therefore, A\; + Ay = lub(.5).



5. Prove that the irrationals are dense. That is, if & < §, then there is a rational ¢ so that a < t < 5.
(a) Prove that if 7 and s # 0 are rational, then r + sv/2 is irrational.

Proof: By contradiction. Assume 7 + svV2 = % is rational. Then since r and s are rational, we

have

J P M
T+S\/§—?+a\/§—ﬁ

where J,K,P,Q € Z and K,Q, N # 0 and P # 0 since s # 0. But then solving for v/2 we find

QKM —QJN
V2= PNK

is rational. This contradicts that v/2 is irrational.

(b) Show that v/2 < m(j — a) for some positive integer m.

Proof: Since v/2 and B — « are both positive, by the Archimedean Property, there is a positive
integer m so that v/2 < m(8 — a).

(c) Let n be the largest integer less than ma. Show that ma < n + /2 < mf.

Proof: Since v2 < m(B — a), then ma + /2 < mp. Since n < ma, then n 4+ v/2 < ma + /2.
But also since n is the largest integer less than ma, then ma < n+ 1. Since 1 < /2, then
ma<n+1l<n++v2 So combining inequalities we have

m 1
ma<n+vV2<mf= a<—+=-V2<58,
non
where 2 + L11/2 is irrational by part (a).

6. Prove The Greatest Lower Bound Property: Every nonempty set of real numbers that has a lower
bound has a greatest lower bound (glb).

(a) Let S be a nonempty set of real numbers and assume that ~ is a lower bound for S. Define A to be
the set of additive inverses of elements in S, that is, A = {—s | s € S}. Show that —v is an upper
bound for A.

Proof: If v is a lower bound for S, then Vs € S we have v < s. Therefore Vs € S we have
—\ > —s, s0 —v is an upper bound for A.

(b) By the least upper bound property of the real numbers, since A has an upper bound —v, then A must
have a least upper bound .

(¢) Show that —A\ is a lower bound for S...and at the same time we’ll show show —\ is glb (.5).

Proof: Remember that v was any lower bound for S and that —+ is an upper bound for A.
Since A is the least upper bound for A, V — s € A (that is, Vs € S), we have

—s< A< —.

Multiplying by —1 we get Vs € S,
7<=A<s.
The second part of the inequality shows that —\ is a lower bound for S and the first part of the

inequality shows that —\ is the greatest lower bound since —\ is at least as big as any other
lower bound ~.



7. (a) (Generalization) Let (A, <) be any partially ordered set and let S be a subset of A. Define the terms
lower bound of S and greatest lower bound of S.

Definition: 7 is a lower bound of S in A if for all s € S we have v < s.

Definition: ) is a greatest lower bound of S in A if A is a lower bound for S and for any
lower bound v of S v < A.

(b) Prove that if S has a greatest lower bound A, then it is unique.

Definition: v and A are both greatest lower bounds of S. Then by definition, since A is a greatest
lower bound of S, we have v < XA in A. Similarly, since - is a greatest lower bound of S, we have
A <~in A. Since A is a poset, then A = 7. Hence the glb is unique.

8. (a) Prove that given any e > 0 there is some natural number n such that % <e.

Proof: Since € and 1 are both positive, we may apply the Archimedean property (with oo = €
and 8 = 1). So there is a positive integer n so that 1 < ne. Therefore, % < €.

(b) Prove the result in another way using the density of the rationals.

Proof: Since 0 < ¢, and since the rationals are dense, there is a rational 7> so that 0 < ™ <'¢,
where m,n € N. Since 1 < m, then % < % < €.



