Math 331 Homework: Day 16

Practice and Reading

- 1. The next big idea: uniform continuity. Read Section 2.6 carefully. Least upper bounds turn up again in the intermediate value and max-min theorems. Do the Preparation on the back of the sheet.
- **2.** Practice: Page 74 and 75 #2.4.2, 3, 6, and 8 and Page 82 #2.5.1. Give a proof of Theorem 2.4.3.

Hand In Wednesday

Most of these are short and simply involve the various definitions of limit or the definition of continuity.

- 1. Prove (using the definition of one-sided limit) that $\lim_{x\to 4^+}\sqrt{x^2-16}=0.$
- 2. Read all parts. Similar results hold for products and quotients. Also similar results hold for $x \to a^-$ or $x \to -\infty$. Adapt the proofs of our earlier limit properties to the new types of limits.
 - For parts (a) and (b): Suppose that $\lim_{x\to+\infty} f(x) = L$ and $\lim_{x\to+\infty} g(x) = M$.
 - a) [WS] Prove that $\lim_{x\to+\infty} [f(x) + g(x)] = L + M$.
 - **b)** [H] If $c \neq 0$ is a constant, show that $\lim_{x \to +\infty} cf(x) = cL$. (The case c = 0 is obviously true, right?)
 - For parts (c) and (d): Suppose that $\lim_{x\to a^+} f(x) = L$ and $\lim_{x\to a^+} g(x) = M$.
 - c) [H] Prove that $\lim_{x\to a^+} \left[f(x) + g(x) \right] = L + M$.
 - d) [WS] If $c \neq 0$ is a constant, show that $\lim_{x\to a^+} cf(x) = cL$. (The case c = 0 is obviously true, right?)
- **3.** Prove that $f(x) = -2x^2 1 \sqrt{x}$ is continuous on $[0, \infty)$. Split the proof into two cases: a > 0 and the case a = 0 where you need to show that $\lim_{x\to 0^+} f(x) = f(0)$. Use the previous problem, Theorem 2.4.3, Examples 2.2.1 and 2.4.1, and other results to justify your steps. Avoid ϵ and δ .
- **4.** a) Prove: If $m \in \mathbb{N}$, then $\lim_{x \to +\infty} \frac{1}{x^m} = 0$. (Use ϵ . You can do this directly without using induction).
 - **b)** Show that if p is the polynomial $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, then $\lim_{x \to +\infty} \frac{p(x)}{x^n} = a_n$. Hint: No ϵ proof is needed. Do the division term-by-term and then use part (a) and Problem 2 above.
 - c) Show that the conclusion in (b) can be rewritten as: For any $\epsilon > 0$, there is an N such that if x > N, then $a_n \epsilon < p(x)/x^n < a_n + \epsilon$.
 - d) Prove: If $a_n > 0$, there is an N' such that if x > N', then $\frac{a_n}{2} < p(x)$. This result says that for sufficiently large x, the values of a polynomial p(x) are bounded away from 0. (Hint: In (c) take $\epsilon = \frac{a_n}{2}$ and let $N' = \max\{N, 1\}$.) [This result is used for Corollary 2.6.2 on page 83 where $a_n = 1$.]
- 5. This problem explores composition and limits. You may wish to reread the proof of Theorem 2.5.3, but this is far easier. This particular result is needed to prove l'Hôpital's Rule.
 - a) Prove: If c is a function such that a < c(x) < x for all x > a, then $\lim_{x \to a^+} c(x) = a$.
 - b) Prove: If $\lim_{x\to a^+} f(x) = L$ and if y = c(x) is a function such that a < c(x) < x for all x > a, then $\lim_{x\to a^+} f(c(x)) = L$. Hint: If you are having a hard time "seeing" this, substitute y for c(x).
- **6.** a) Define the following limit expression: $\lim_{x \to a} f(x) = +\infty$
 - **b)** Use your definition to show that $\lim_{x\to 0} \frac{2}{|x|} = +\infty$.
- 7. Prove: If f(x) is continuous at x = a, then |f(x)| is continuous at x = a. No ϵ . Use previous work!
- 8. [WS]: Prove Theorem 2.5.2 (a). [H]: Prove Theorem 2.5.2 (b). See the proof of (c) in the text.
- **9.** Suppose that f(x) and g(x) are continuous on [a, b] and that f(a) < g(a) and f(b) > g(b). Prove that there is a point $x \in [a, b]$ with f(x) = g(x).
- **10.** a) Suppose that f is a function such that for any $x, y \in \mathbb{R}$ we have f(x+y) = f(x) + f(y). Prove that f(0)=0. (Hint: 0 + 0 = 0.)
 - b) With f as in part (a) prove: If f is continuous at 0 then it is continuous at any point a. Hint: x = (x a) + a. OR Consider an alternative definitions of continuity.

Self-Study

- 1. Carefully define the expression: $\lim_{x \to +\infty} f(x) = +\infty$. Use your definition to show that $\lim_{x \to +\infty} x^2 = +\infty$.
- **2.** Suppose that f is defined everywhere and bounded (i.e. |f(x)| < M for some fixed M). Show that the function g(x) = xf(x) is continuous at x = 0. [How can you use this in problem 6 of §2.6?]

Class Prep: The Intermediate Value Theorem. I need a volunteer to present this next time.

On an intuitive level, the graph of a continuous function f is an "unbroken" curve. If f is continuous on the closed interval [a, c] with f(a) < 0 and f(c) > 0, geometric intuition tells us that there is at least one point b between a and c such that f(b) = 0. When f is not continuous, clearly such a point b need not exist.

The Intermediate Value Theorem. Assume that f is continuous on the closed interval [a, c] and let y be any real number such that

$$f(a) < y < f(c).$$

Then there exists at least one number b in the interval [a, c] such that f(b) = y.

Proof: Here's the first part of the proof. Justify each of the steps. It should remind you of the proof of the Bolzano-Weierstrass Theorem. The proof makes use of the LUB Axiom and continuity, a very powerful combination. Let

$$S = \{ x \in [a, c] \mid f(x) < y \}.$$

1. S is nonempty because _____

2. S has an upper bound because _____

3. *S* has a least upper bound *b* because _____

4. $b \ge a$ because _____ and $b \le c$ because _____

- **5.** So $b \in [a, c]$ and therefore f(b) is defined. By Axiom ______ there are three possibilities: (i) f(b) y < 0; (ii) f(b) y > 0; or (iii) f(b) y = 0. First we show that (i) is impossible.
- 6. a) By contradiction. Assume (i) holds: f(b) < y. Observe that b ≠ c because ______
 b) So b < c because ______

7. Let $\epsilon = y - f(b)$. Then $\epsilon > 0$ because ______

- 8. There is a $\delta > 0 \ni$ if $|x b| < \delta$, then $|f(x) f(b)| < \epsilon$ because ______
- **9.** Pick x satisfying $b < x < b + \delta$. (Note: Here's where b < c is used: $b + \delta < c$.) For any such x,

$$|f(x) - f(b)| \le |f(x) - f(b)| < \epsilon.$$

So $f(x) < y$ because	(Hint	t: What's ϵ ?)
10. $x \in S$ because		

11. Contradiction because (see #9) ______. So (i) is false.
I need another volunteer to modify the proof above to showing (ii) in part 5 is false. That would leave (iii) which is what we want to prove.