Math 331 Homework: Day 17

Practice and Reading

- **1.** a) New: Page 88, #2, 5(a), 7(a). b) Review: Page 74 and 75 #2.4.2, 3, 6, and 8 and Page 82 #2.5.1. Give a proof of Theorem 2.4.3.
- **2.** [Extra Credit.] A fixed point for a function is a point where f(x) = x. Suppose that $f: [0,1] \to [0,1]$ and f is continuous. (This notation means that [0,1] is both the domain and range for f, i.e., $0 \le f(x) \le 1$ for all $x \in [0, 1]$.) Prove that it must have a fixed point in [0, 1]. (Hint: use the previous problem.)

The Intermediate Value Theorem: Part Two of Proof.

Assume that f is continuous on the closed interval [a, c] and let y be any real number such that

$$f(a) < y < f(c).$$

Then there exists at least one number b in the interval [a, c] so that f(b) = y.

Proof: Here's the second part of the proof. Justify each step. It should remind you of the proof of the H-B and B-W Theorems. The proof makes use of the LUB Axiom and continuity, a very powerful combination. Let

$$S = \{ x \in [a, c] \mid f(x) < y \}.$$

1. S is non-empty because _____

2. S has an upper bound because ____

3. *S* has a least upper bound *b* because _____

 $_$ and $b \le c$ because $_$ 4. b > a because _____

- 5. So $b \in [a, c]$ and therefore f(b) is defined. By Axiom ______ there are three possibilities: (i) f(b) < y; (ii) f(b) > y; or (iii) f(b) = y. You showed that (i) is impossible on class prep. Let's show (ii) is impossible.
- **6.** By contradiction. Assume (ii) holds: f(b) > y. Notice $b \neq a$ because _____ so a < b by step _____.

7. Let $\epsilon = f(b) - y$. Then $\epsilon > 0$ because ______.

- 8. There is a $\delta > 0 \ni$ if $|x b| < \delta$, then $|f(x) f(b)| < \epsilon$ because _____.
- **9.** For any x such that $b \delta < x < b$,

$$|f(b) - f(x)| \le |f(x) - f(b)| < \epsilon.$$

So f(x) > y because _____. (Hint: What's ϵ ?)

10. So for any x such that $b - \delta < x < b, x \notin S$ because _____ 11. This contradicts that _____

- _____. So (ii) is false.
- 12. This leaves case (iii) which must be true by Trichotomy. So b = f(y) which is what we want to prove.

Main Theorem: Justify the Steps for Next Time. If f is continuous on the closed, bounded interval [a, b], then f is uniformly continuous there.

Proof: Given $\epsilon > 0$, we need to find a single value $\delta > 0$ such that if x and y are in [a, b] and $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$. Strategy:

- 1. use continuity to generate an open cover of [a, b];
- 2. use the Heine-Borel theorem to obtain a finite subcover of [a, b];
- 3. use this finiteness to generate the required δ .
- 1. For each s in [a, b] there is a $\delta_s > 0$ such that if x is in [a, b] and $|x s| < \delta_s$, then $|f(x) f(s)| < \epsilon/2$ because
 - _____. At this point each δ still depends on s.
- **2.** For each s in [a, b] form the open interval $O_s = (s \frac{\delta_s}{2}, s + \frac{\delta_s}{2})$. The collection $\mathcal{O} = \{O_s\}_{s \in [a, b]}$ forms an open cover of [a, b] because
- **3.** There is a finite subcollection C in \mathcal{O} that covers [a, b] by ______ Denote the intervals in C by

$$C = \left\{ (s_1 - \frac{\delta_1}{2}, s_1 + \frac{\delta_1}{2}), \dots, (s_n - \frac{\delta_n}{2}, s_n + \frac{\delta_n}{2}) \right\}.$$

Note the different deltas.

4. Let $\delta = \min\{\frac{\delta_1}{2}, \dots, \frac{\delta_n}{2}\}$. Why does this min exist? ______ Notice that this δ no longer depends on s.

5. If x is in [a, b], it is in one of the intervals in C, say $(s_k - \frac{\delta_k}{2}, s_k + \frac{\delta_k}{2})$, because ______.

- 6. So $|x s_k| < \frac{\delta_k}{2}$ because _____
- 7. Show: If y is in [a, b] and $|x y| < \delta$, then $|y s_k| < \delta + \frac{\delta_k}{2}$. Hint: Use the triangle inequality.

8.	$\delta + \frac{\delta_k}{2} \le \delta_k$ by step So $ y - s_k < \delta_k$ by step
9.	If $ y - s_k < \delta_k$, then $ f(y) - f(s_k) < \epsilon/2$ by step
	Similarly, if $ x - s_k < \frac{\delta_k}{2} < \delta_k$, then $ f(x) - f(s_k) < \epsilon/2$ by step
10.	Summarizing: If $ x - y < \delta$, then $ y - s_k < \delta_k$ and $ x - s_k < \delta_k$ by Steps So
	$ f(x) - f(y) = f(x) - f(s_k) + f(s_k) - f(y) < $ < .

11. So f is uniformly continuous on [a, b].