Math 331 Homework, Day 24

Problems 1 through 4 and 6 (5 is optional) are due Wednesday. All are short and their purpose is to get you to
review before we start on integration on Wednesday. Read Section 3.4 up to page 122.

5 1
1. Use an ¢, 6 proof to show that lirr% x2—|— =3 Be careful of signs when factoring and bounding.
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2. Listed below are various properties of functions.
1. f is continuous on [—2,2].
2. f is differentiable on [—2, 2].

3. f is uniformly continuous on [—2,2].

S

. fis bounded on [-2,2].
For each of the following find a function which satisfies the required combination. If such a combination is
impossible briefly justify why it is impossible.

a) A function satisfying 1 but not 2.

b) A function satisfying 2 but not 3.

c) A function satisfying 1 but not 3.

d) A function satisfying 2 but not 4.

e) A function satisfying 4 but not 1.

3. Let f(z) be a continuous function on a closed, bounded interval [a,b], Suppose that f(z) > 0 for all z € [a, b].
Then there is an € > 0 such that f(x) > € for all « € [a,b]. Hint: Apply a theorem; justify why it applies.

4. Prove this weaker version much more simply from scratch without using the Generalized Mean Value Theorem
(or even the MVT). Hint: Use the definition of the derivative! It should be quick.

L’Hépital’s Rule (Weak Version): Assume that f and g are differentiable on an open interval I containing a.
If f(a) =0 and g(a) = 0 but g’(a) # 0. then

lim

f(z) _ f'(a)
a=ag(z)  g'(a)

5. We mentioned in class that L’Ho6pital’s Rule extends to limits at infinity. That is:

Assume that f and g are differentiable on the interval (a,+00) and assume that

lim f(z)=0 and lim g(z)=0.
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Further, assume that ¢'(z) # 0 for all z € (a,+00). If lir+n f'(z)/g'(z) exists, then
Tr—r+00

i @: lim ()
v gla) ~ atoe (@)

An analogous result holds for limits as  — —oo.
This extension to infinity depends on Theorem 2.4.6 that relates one-sided limits to limits at infinity.

Theorem 2.4.6: Assume that f is a function defined on an interval of the form (a,+00). Let y = 1/x.
Then

lim f(z)=L < lim f(i):L

T—+00 y—0+

An analogous result holds for limits as  — —oo.
a) Extra Credit: This theorem shows that we can compute limits at infinity by computing one-sided limits at

0 where we know L’Ho6pital’s Rule applies. So here’s the bonus question: Prove Theorem 2.4.6 <=. The other
direction is done in your text. This is a good exercise in using the limit definitions.



The Mean Value Theorem. Let f be continuous on [a,b] and differentiable on (a,b). Then there is a point ¢
strictly between a and b such that
f(b) — f(a)
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First Consequences of the MVT. We have already proven the following: Suppose that f is continuous on [a, b]
and differentiable on (a,b). Under these hypotheses
a) If f/(z) =0 for all = € (a,b), then f is constant on [a,b]. (Theorem 3.3.4, done in class.)
b) If f'(z) > 0 for all z € (a,b) and if z,y € (a,b) with z < y, then f(z) < f(y) (that is, f is increasing on
[a,b]. (Done in class.)
c) If f/(z) <0 for all x € (a,b) and if z,y € (a,b) with x < y, then f(x) > f(y) (that is, f is decreasing on
[a,b]. (Similar to above.)
d) If f/(x) #0 for all € (a,b), then f is one-to-one on [a,b]. (On Exam 2.)

6. Use (a) to prove: If f and g are continuous on [a, b], differentiable on (a,b) with ¢'(z) = f'(x) for all z € (a,b),
then there is a constant k so that g(z) = f(x) + k on [a, b].

Differentiability on Closed Intervals. g is differentiable on the closed interval [a, b] if g is differentiable at each
point in the open interval (a,b) and the appropriate one-sided derivatives exist at a and b. Specifically

1. g is differentiable at each z € (a,b),

- —g(b
2. lim M exists (and is denoted by ¢'(a)), and lim Li()

r—at r—a T—b— T —

exists (and is denoted by ¢'(b)).

Note: All basic derivative rules (e.g., sum, product) carry over to functions differentiable on closed intervals.

OTHER CONSEQUENCES, #7,8 on next Assignment

7. Intermediate Value Theorem for Derivatives. If f is differentiable on [a,b] and f'(a) < k < f’(b), then
there is a ¢ € (a,b) with f/(c¢) = k. A similar result holds if f'(a) > k > f'(b). (Note: We cannot apply the IVT
because we do not know that f’ is continuous on [a, b].)

a) Consider the auxiliary function g(z) = f(x) — kz, for « € [a,b]. Since f and x are differentiable on [a,b] it
follows that g is differentiable on [a, b]. Show that ¢'(a) < 0 < ¢'(b).

b) Prove that g has a minimum point ¢ € [a, b].

—g(
c) From part (a), 0 < ¢'(b) = 111?[[)1 Lg() Use the definition of one-sided limit to prove that there exists
rz—b~ T —
d > 0so that if = <z —b <0, then 0 < w. Hint: Let € = ¢/(b).

d) With this same ¢ prove: If —§ < z — b < 0, then g(z) < g(b). [This shows that g(b) is NOT the minimum
value of g. A similar argument shows that g(a) is also not the minimum value of ¢g. In other words, ¢ # a and

c#b)
e) So c € (a,b). Prove ¢’(¢) = 0 and then show f/(c) = k.

8. True or False: The Dirichlet function D(x) is the derivative of some function F(z) on the interval [a,b]. (Is
D(z) = F'(z) for some function F'?) Explain.

9. Corollary of IVTFD. If f is differentiable on [a,b] and f/(z) # 0 for all = € (a,b), then either f'(x) > 0 for all
x € [a,b] or f'(x) <0 for all z € [a,b]. (So from Problem 1, f is either always increasing or always decreasing on

[a,0].)

10. The Cauchy Mean Value Theorem. Suppose that f and g are continuous on the closed, bounded interval
[a,b] and are differentiable on (a,b). Then there is a point ¢ strictly between a and b such that

(9(b) = g(a)) f'(c) = (f(b) — f(a))g ().

a) Define the auxiliary function h(z) = (g(b) — g(a)) f(z) — (f(b) — f(a))g(x). Show that h is continuous on [a, b]
and differentiable on (a,b).

b) Show that h(a) = h(b).

¢) Apply the mean value theorem to h and show that ¢ is the desired point.



