
Math 331 Homework: Day 29

Read/Review Section 3.5 which we are close to finishing. Start reading Section 3.6 which we will start on Monday. Pay
particular attention to Theorems 3.6.1, 3.6.2(The Fundamental Theorem of Calculus), and Corollary 3.6.3. TRY to fill
in the proof of the Composition Theorem if we don’t get to it today in class. This is not in the text.

Classwork

1. Page 131: #3.4.5. Show that the “skyscraper” function (graph it), s(x) =

{
1, if x = 0

0, if 0 < x ≤ 1,
is integrable on [0, 1]

and that
∫ 1

0
s(x) dx = 0. Use the following process.

a) For n ∈ N let Pn be the partition {0, 1
n , 1}. Compute L(Pn, s) and U(Pn, s).

b) Show that s is integrable by showing that for any ε > 0, there is a sufficiently large n ∈ N such that U(Pn, s) −
L(Pn, s) < ε.

c) Show that
∫ 1

0
s = 0.

2. Suppose that f is integrable on [a, b].

a) Then by definition f must be bounded on [a, b]. In particular, suppose that m ≤ f(x) ≤M for all x ∈ [a, b], where

m and M are any lower and upper bounds for f on [a, b]. Show that m(b− a) ≤
∫ b
a
f ≤M(b− a).

b) Show: If f is nonnegative and integrable on [a, b], then 0 ≤
∫ b
a
f . Use part (a).

The Sup Lemma. Let f be a bounded function on [a, b] and let P = {x0, x1, . . . , xn} be a partition of [a, b]. Then
Mi −mi = sup{|f(x)− f(y)| : x, y ∈ [xi−1, xi]}

Proof. Let x, y ∈ [xi−1, xi]. By definition of Mi and mi we have Mi ≥ f(x) ≥ mi and Mi ≥ f(y) ≥ mi. By Problem
1.3.19(d), Mi −mi ≥ |f(x)− f(y)|. Since x and y were arbitrary, it now follows that

Mi −mi ≥ sup{|f(x)− f(y)| : x, y ∈ [xi−1, xi]}. (1)

Given ε > 0. Since Mi = sup{f(x) : x ∈ [xi−1, xi]}, then there exist x ∈ [xi−1, xi] so that

f(x) > Mi − ε/2. (2)

Similarly, there exists y ∈ [xi−1, xi] so that f(y) < mi + ε/2, which means

−f(y) > −mi − ε/2. (3)

ADDING (2) and (3) using Theorem 1.3.8 gives f(x)− f(y) > Mi −mi − ε, and therefore, |f(x)− f(y)| > Mi −mi − ε.
It now follows that that

sup{|f(x)− f(y)| : x, y ∈ [xi−1, xi]} > Mi −mi − ε.

Since this holds for any ε > 0, we have (like in presentation problem 1 above)

sup{|f(x)− f(y)| : x, y ∈ [xi−1, xi]} ≥Mi −mi. (4)

The inequalities (1) and (4) imply the desired equality.



Theorem (Composition and Integrability). Suppose that f is integrable on [a, b] and that c ≤ f(x) ≤ d for all
x ∈ [a, b].1 Assume further that g is continuous on [c, d]. Then the composite g ◦ f is integrable on [a, b].

Proof: Why would this proof be easy if both f and g were continuous? The proof is a bit complicated notationally. We
will use Theorem 3.4.9, so let ε > 0. (Review the Sup Lemma (Day 26 Handout) before continuing.)

a) Let K = max {g(t) : t ∈ [c, d]}−min{g(t) : t ∈ [c, d]}. Why does K exist?

b) Choose ε′ = b−a+K
ε > 0. (We’ll see why later.) g is uniformly continuous on [c, d] by

c) So there is a δ′ > 0 so that whenever s, t ∈ [c, d] and |s− t| < δ′, then < ε′.
[And for technical reasons, we will want to choose δ < ε′. So let δ = min{δ′, ε′}.]

d) Next, there exists a partition P = {x0, x1, . . . , xn} of [a, b] so that U(P, f)− L(P, f) < δ2 by .

e) Now we will show that

U(P, g ◦ f)− L(P, g ◦ f) <

n∑
i=1

[Mi(g ◦ f)−mi(g ◦ f)](xi − xi−1) < ε.

To do this, we separate the set of indices of the partition P into two disjoint sets. On the first set we make
Mi(g ◦ f)−mi(g ◦ f) small and on the second set we make

∑
(xi − xi−1) small. Let

A = {i : Mi(f)−mi(f) < δ} and B = {i : Mi(f)−mi(f) ≥ δ}.

If i ∈ A and x, y ∈ [xi−1, xi], then explain why:

|f(x)− f(y)| ≤Mi(f)−mi(f) < δ.

f) So if x, y ∈ [xi−1, xi], then |(g ◦ f)(x)− (g ◦ f)(y)| = |g(f(x))− g(f(y))| < ε′ by Step .

g) So Mi(g ◦ f)−mi(g ◦ f) ≤ ε′ by .

h) Adding we get (justify the three inequalities)

∑
i∈A

[Mi(g ◦ f)−mi(g ◦ f)](xi − xi−1) ≤
∑
i∈A

ε′(xi − xi−1) ≤
n∑
i=1

ε′(xi − xi−1) ≤ ε′(b− a)

i) What if i ∈ B? Then Mi(f)−mi(f)
δ ≥ 1 because . So (justify each inequality)

∑
i∈B

1(xi−xi−1) ≤
∑
i∈B

(
Mi(f)−mi(f)

δ

)
(xi−xi−1) ≤

∑
all i

(
Mi(f)−mi(f)

δ

)
(xi−xi−1) =

U(P, f)− L(P, f)

δ
< δ < ε′.

j) By part (a): Mi(g ◦ f)−mi(g ◦ f) ≤ max {g(t) : t ∈ [c, d]}−min{g(t) : t ∈ [c, d]} = K so (justify)∑
i∈B

[Mi(g ◦ f)−mi(g ◦ f)](xi − xi−1) ≤
∑
i∈B

K(xi − xi−1) = K
∑
i∈B

1(xi − xi−1) ≤ Kε′.

k) Now recombine all the indices:

U(P, g ◦ f)− L(P, g ◦ f) =
∑
i∈A

[Mi(g ◦ f)−mi(g ◦ f)](xi − xi−1) +
∑
i∈B

[Mi(g ◦ f)−mi(g ◦ f)](xi − xi−1)

≤ ε′(b− a) +Kε′ = < .

So g ◦ f is integrable by .

1The usual notation for c ≤ f(x) ≤ d for all x ∈ [a, b] is to say: f([a, b]) ⊂ [c, d].



3. (2 Volunteers) Page 131: #3.4.5 (a and b, and probably (c)). Show that the “skyscraper” function (graph it),

s(x) =

{
1, if x = 0

0, if 0 < x ≤ 1,

is integrable on [0, 1] and that
∫ 1

0
s(x) dx = 0. Use the following process.

a) For n ∈ N let Pn be the partition {0, 1
n , 1}. Compute L(Pn, s) and U(Pn, s).

b) Show that s is integrable by showing that for any ε > 0, there is a sufficiently large n ∈ N such that U(Pn, s) −
L(Pn, s) < ε.

c) Show that
∫ 1

0
s = 0.

Proof: Given ε > 0. By Problem 1.2.13, there is n ∈ N so that 1
n < ε. Let Pn be the partition {0, 1

n , 1}.
Then

L(Pn) = 0
(
1
n − 0

)
+ 0

(
1− 1

n

)
= 0

and
U(Pn) = 1

(
1
n − 0

)
+ 0

(
1− 1

n

)
= 1

n .

Thus, U(Pn)− L(Pn) = 1
n < ε, so by Theorem 3.4.9, s is integrable on [0, 1].

Now let P = {0 = x0, x1, · · · , xk = 1} be any partition of [0, 1]. Then

L(P, s) =

k∑
i=1

mi(xi − xi−1) =

k∑
i=1

0(xi − xi−1) = 0.

So, since s is integrable, ∫ b

a

s = sup
P
{L(P, s)} = 0.

4. (2 Volunteers) Suppose that f is integrable on [a, b].

a) Then by definition f must be bounded on [a, b]. In particular, suppose that m ≤ f(x) ≤M for all x ∈ [a, b], where

m and M are any lower and upper bounds for f on [a, b]. Show that m(b− a) ≤
∫ b
a
f ≤M(b− a).

Proof: Suppose that m ≤ f(x) ≤ M for all x ∈ [a, b]. Let P = {a, b}. Let m1 = inf{f(x) | x ∈ [a, b]} and
M1 = sup{f(x) | x ∈ [a, b]}. By definition of infimum and supremum, m ≤ m1 and M1 ≤ M . Because f is

integrable, L(P, f) ≤
∫ b
a
f ≤ U(P, f). Therefore, (by Theorem 1.3.9)

m(b− a) ≤ m1(b− a) = L(P, f) ≤
∫ b

a

f ≤ U(P, f) = M1(b− a) ≤M(b− a).

b) Show: If f is nonnegative and integrable on [a, b], then 0 ≤
∫ b
a
f . Use part (a).

If f is nonnegative on [a, b], then 0 ≤ f(x) for all x ∈ [a, b], i.e., 0 is a lower bound for f . So let m = 0 in
part (a) to obtain

0 = m(b− a) ≤
∫ b

a

f.


