Math 331 Homework: Day 30

Read/Review Section 3.6 which we will start on Monday. All of the Theorems in this section are very important. Several
should be familiar from Calculus II.

Volunteer to Present:

1. Complete the proof of Part 2 of the Linearity Theorem for Integrals: If f is integrable on [a,b] and ¢ is any constant,

b b
then / cf =c¢ | f. Prove the result when ¢ < 0. The easiest method is to use previous work (the fact that we
a a

know the result is true for ¢ > 0 and for ¢ = —1, but one can also mimic the proof for the case ¢ > 0. Write up the
solution which I will copy for the class.

A great practice problem:

2. f and g are integrable on [a, b], prove fg is integrable on [a, b] using the Square Theorem. Hint: See a problem from
Test 2 for a clever way to write fg.

i Integrability of Composite Functions

If we do not get to the proof today, there is a powerpoint of the proof on line at our website. You should fill in the blanks
on the back of this sheet using the powerpoint.

The Sup Lemma. Let f be a bounded function on [a,b] and let P = {xg,z1,...,2,} be a partition of [a,b]. Then

M; —m; = sup{[f(z) — f(y)| : 7,y € [wi—1, 7]}
Proof. Let x,y € [r;,-1,;]. By definition of M; and m; we have M; > f(x) > m; and M; > f(y) > m;. By Problem
1.3.19(d), M; — m; > |f(z) — f(y)|. Since x and y were arbitrary, it now follows that

M; —m; = sup{|f(z) = f(y)| : 2,y € [wi—1, 2i]}. (1)
Given € > 0. Since M; = sup{f(x) : « € [z;_1,z;]}, then there exist x € [z;_1, ;] so that
flx) > M; —¢/2. (2)
Similarly, there exists y € [x;_1, ;] so that f(y) < m; + €/2, which means
—fy) > —mi —¢€/2. (3)

ADDING (2) and (3) using Theorem 1.3.8 gives f(z) — f(y) > M; — m; — ¢, and therefore, |f(x) — f(y)| > M; — m; — €.
It now follows that that

sup{|f(z) — f(y)| : x,y € [wi_1, 2]} > M; — m; —e.

Since this holds for any e > 0, we have (like in presentation problem 1 above)

sup{|f(z) — f(W)| : x,y € [wi_1, 23]} > My —m;. (4)

The inequalities (1) and (4) imply the desired equality.



Theorem (Composition and Integrability). Suppose that f is integrable on [a,b] and that ¢ < f(x) < d for all
x € [a,b].} Assume further that g is continuous on [c, d]. Then the composite g o f is integrable on [a, b].

Proof: Why would this proof be easy if both f and g were continuous? The proof is a bit complicated notationally. We
will use Theorem 3.4.9, so let € > 0.

a) Let K =max{g(t):t € [¢,d]} —min{g(t) : t € [c,d]}. Why does K exist?

b) Choose ¢ = % > 0. (We'll see why later.) g is uniformly continuous on [c, d] by

¢) So there is a ¢’ > 0 so that whenever s,t € [¢,d] and |s — ¢| < ¢’, then < €.
[And for technical reasons, we will want to choose ¢ < €’. So let § = min{¢’,€'}.]

d) Next, there exists a partition P = {zg,x1,...,7,} of [a,b] so that U(P, f) — L(P, f) < § by

e) Now we will show that

n

U(P,go f) = L(P,go f) <> [Mi(go f) —mi(go f)l(zi — zi1) <€

i=1

To do this, we separate the set of indices of the partition P into two disjoint sets. On the first set we make
M;(go f) —m;i(go f) small and on the second set we make > (z; — x;—1) small. Let

A={i: Mi(f) —mi(f) <6} and  B={i: M;(f)—m(f) =3}
Ifi € A and z,y € [x;_1,x;], then explain why:

[f(@) = f(y)| < Mi(f) —mi(f) <.

) Soif 2,y € [xi1,2:], then [(go f)(x) — (g0 f)(W)| = lg(f(z)) — g(f(y))| < € by Step
g) So Mi(go f) —mi(go f) <€ by

h) Adding we get (justify the three inequalities)

n

Z[Mz(g of)—mi(go f)l(zi —zi—1) < Z € (zi —xi-1) < ZGI(%‘ —zi—1) <€(b—a)

icA i€A i=1

i) What if i € B? Then w > 1 because So (justify each inequality)
M;(f) —mi(f) M;(f) —mi(f) U(P, f) = L(P, f) /
ieZB 1(xifxl-_1) < lEZB <(5 (l’ifl'i_l) < a;i f ("Eif.’ﬂi_l) = 5 <d<ce.

j) By part (a): Mi(go f) —mi(go f) <max{g(t):t € [c,d]} —min{g(t) : t € [¢,d]} = K so (justify)
Z[Mz(g o f) =mi(go f)l(z; —zi—1) < ZK(CUZ —Ti1) = KZ Wz —xi1) < K€
i€B ieB ieB
k) Now recombine all the indices:
U(P,go f) = L(P,go f) = [Mi(go f) —=mi(go f)l(zi —xi1) + > _[Mi(go f) —milgo f)](w; — z; 1)
icA i€B
<éb—-a)+Ke = <

So g o f is integrable by

!The usual notation for ¢ < f(z) < d for all x € [a,b] is to say: f([a,b]) C [c,d].



