Math 331 Homework: Day 30

Read/Review Section 3.6 which we will start on Monday. All of the Theorems in this section are very important. Several should be familiar from Calculus II.

Volunteer to Present:

1. Complete the proof of Part 2 of the Linearity Theorem for Integrals: If f is integrable on [a, b] and c is any constant, then $\int_{a}^{b} cf = c \int_{a}^{b} f$. Prove the result when c < 0. The easiest method is to use previous work (the fact that we know the result is true for $c \ge 0$ and for c = -1, but one can also mimic the proof for the case c > 0. Write up the solution which I will copy for the class.

A great practice problem:

2. f and g are integrable on [a, b], prove fg is integrable on [a, b] using the Square Theorem. Hint: See a problem from Test 2 for a clever way to write fg.

Integrability of Composite Functions Integrability of Composite Functions

If we do not get to the proof today, there is a powerpoint of the proof on line at our website. You should fill in the blanks on the back of this sheet using the powerpoint.

3.

The Sup Lemma. Let f be a bounded function on [a, b] and let $P = \{x_0, x_1, \ldots, x_n\}$ be a partition of [a, b]. Then $M_i - m_i = \sup\{|f(x) - f(y)| : x, y \in [x_{i-1}, x_i]\}$

Proof. Let $x, y \in [x_{i-1}, x_i]$. By definition of M_i and m_i we have $M_i \ge f(x) \ge m_i$ and $M_i \ge f(y) \ge m_i$. By Problem 1.3.19(d), $M_i - m_i \ge |f(x) - f(y)|$. Since x and y were arbitrary, it now follows that

$$M_i - m_i \ge \sup\{|f(x) - f(y)| : x, y \in [x_{i-1}, x_i]\}.$$
(1)

Given $\epsilon > 0$. Since $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$, then there exist $x \in [x_{i-1}, x_i]$ so that

$$f(x) > M_i - \epsilon/2. \tag{2}$$

Similarly, there exists $y \in [x_{i-1}, x_i]$ so that $f(y) < m_i + \epsilon/2$, which means

$$-f(y) > -m_i - \epsilon/2. \tag{3}$$

ADDING (2) and (3) using Theorem 1.3.8 gives $f(x) - f(y) > M_i - m_i - \epsilon$, and therefore, $|f(x) - f(y)| > M_i - m_i - \epsilon$. It now follows that that

$$up\{|f(x) - f(y)| : x, y \in [x_{i-1}, x_i]\} > M_i - m_i - \epsilon$$

Since this holds for any $\epsilon > 0$, we have (like in presentation problem 1 above)

s

$$\sup\{|f(x) - f(y)| : x, y \in [x_{i-1}, x_i]\} \ge M_i - m_i.$$
(4)

The inequalities (1) and (4) imply the desired equality.

Theorem (Composition and Integrability). Suppose that f is integrable on [a, b] and that $c \leq f(x) \leq d$ for all $x \in [a, b]$.¹ Assume further that g is continuous on [c, d]. Then the composite $g \circ f$ is integrable on [a, b].

Proof: Why would this proof be easy if both f and g were continuous? The proof is a bit complicated notationally. We will use Theorem 3.4.9, so let $\epsilon > 0$.

- a) Let $K = \max \{g(t) : t \in [c, d]\} \min \{g(t) : t \in [c, d]\}$. Why does K exist?
- **b)** Choose $\epsilon' = \frac{b-a+K}{\epsilon} > 0$. (We'll see why later.) g is uniformly continuous on [c, d] by ______
- c) So there is a $\delta' > 0$ so that whenever $s, t \in [c, d]$ and $|s t| < \delta'$, then ______< ϵ' . [And for technical reasons, we will want to choose $\delta < \epsilon'$. So let $\delta = \min\{\delta', \epsilon'\}$.]
- d) Next, there exists a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] so that $U(P, f) L(P, f) < \delta^2$ by ______.
- e) Now we will show that

$$U(P, g \circ f) - L(P, g \circ f) < \sum_{i=1}^{n} [M_i(g \circ f) - m_i(g \circ f)](x_i - x_{i-1}) < \epsilon.$$

To do this, we separate the set of indices of the partition P into two disjoint sets. On the first set we make $M_i(g \circ f) - m_i(g \circ f)$ small and on the second set we make $\sum (x_i - x_{i-1})$ small. Let

$$A = \{i : M_i(f) - m_i(f) < \delta\}$$
 and $B = \{i : M_i(f) - m_i(f) \ge \delta\}.$

If $i \in A$ and $x, y \in [x_{i-1}, x_i]$, then explain why:

$$|f(x) - f(y)| \le M_i(f) - m_i(f) < \delta.$$

- f) So if $x, y \in [x_{i-1}, x_i]$, then $|(g \circ f)(x) (g \circ f)(y)| = |g(f(x)) g(f(y))| < \epsilon'$ by Step _____.
- g) So $M_i(g \circ f) m_i(g \circ f) \le \epsilon'$ by _____
- h) Adding we get (justify the three inequalities)

$$\sum_{i \in A} [M_i(g \circ f) - m_i(g \circ f)](x_i - x_{i-1}) \le \sum_{i \in A} \epsilon'(x_i - x_{i-1}) \le \sum_{i=1}^n \epsilon'(x_i - x_{i-1}) \le \epsilon'(b-a)$$

i) What if $i \in B$? Then $\frac{M_i(f) - m_i(f)}{\delta} \ge 1$ because ______. So (justify each inequality)

$$\sum_{i \in B} 1(x_i - x_{i-1}) \le \sum_{i \in B} \left(\frac{M_i(f) - m_i(f)}{\delta} \right) (x_i - x_{i-1}) \le \sum_{\text{all } i} \left(\frac{M_i(f) - m_i(f)}{\delta} \right) (x_i - x_{i-1}) = \frac{U(P, f) - L(P, f)}{\delta} < \delta < \epsilon'$$

j) By part (a): $M_i(g \circ f) - m_i(g \circ f) \le \max\{g(t) : t \in [c, d]\} - \min\{g(t) : t \in [c, d]\} = K$ so (justify)

$$\sum_{i \in B} [M_i(g \circ f) - m_i(g \circ f)](x_i - x_{i-1}) \le \sum_{i \in B} K(x_i - x_{i-1}) = K \sum_{i \in B} 1(x_i - x_{i-1}) \le K\epsilon'.$$

k) Now recombine all the indices:

$$U(P, g \circ f) - L(P, g \circ f) = \sum_{i \in A} [M_i(g \circ f) - m_i(g \circ f)](x_i - x_{i-1}) + \sum_{i \in B} [M_i(g \circ f) - m_i(g \circ f)](x_i - x_{i-1}) \\ \leq \epsilon'(b - a) + K\epsilon' = \underline{\qquad} < \underline{\qquad}.$$

So $g \circ f$ is integrable by _____

¹The usual notation for $c \leq f(x) \leq d$ for all $x \in [a, b]$ is to say: $f([a, b]) \subset [c, d]$.