Math 33 Day 33: Classwork/Practice on limits of sequences

Read Section 4.2 and begin Section 4.3 which we will start next time.

- 1. Prove or give a counterexample:
 - **a)** If $\{s_n\}_{n=1}^{\infty}$ converges to s, then If $\{|s|_n\}_{n=1}^{\infty}$ converges to |s|.
 - **b)** If $\{|s_n|\}_{n=1}^{\infty}$ converges to |s|, then $\{s_n\}_{n=1}^{\infty}$ converges to s.
 - c) If $\{|s_n|\}_{n=1}^{\infty}$ converges to 0, then $\{s_n\}_{n=1}^{\infty}$ converges to 0.
- 2. Find an example:
 - a) a convergent sequence of rational numbers that converges to an irrational number
 - b) a convergent sequence of irrational numbers that converges to a rational number
- **3.** Given a sequence $\{s_n\}_{n=1}^{\infty}$ and $k \in \mathbb{N}$. Let $\{t_n\}_{n=1}^{\infty}$ be the sequence defined by $t_n = s_{n+k}$. So the terms in the sequences are the same, it's just that $\{t_n\}_{n=1}^{\infty}$ has the first k terms cut off. Prove that $\{t_n\}_{n=1}^{\infty}$ converges if and only if $\{s_n\}_{n=1}^{\infty}$ converges, and if they converge then $\lim_{n\to\infty} t_n = \lim_{n\to\infty} s$. So the convergence of a sequence is not affected by omitting (or changing) a finite number of terms.
- 4. a) Suppose that lim_{n→∞} s_n = 0. If t_n is a bounded sequence prove that lim_{n→∞} s_nt_n = 0.
 b) Show by an example that the boundedness of {t_n}[∞]_{n=1} is a necessary condition in part (a).
- **5.** Prove that $\{\ln n\}_{n=1}^{\infty}$ diverges.
- 6. a) Determine whether $\left\{\frac{\cos n}{n}\right\}_{n=1}^{\infty}$ converges. Prove your result. b) Determine whether $\left\{\frac{5n^2 + \sqrt[3]{n} + \cos n}{2n^2 - 2n + 1}\right\}_{n=1}^{\infty}$ converges.
- 7. Determine whether $\left\{\frac{1}{2^n}\right\}_{n=1}^{\infty}$ converges. Prove your result.
- 8. For $n \ge 1$, define $a_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}$.
 - **a)** Show that $a_n = 2 \frac{1}{2^{n+1}}$.
 - **b)** Show that $\{a_n\}_{n=1}^{\infty}$ converges to 2.
 - c) More generally assume $r \neq 1$: For $n \ge 1$, define $a_n = 1 + r + r^2 + \cdots + r^n$.
 - **d)** Show that $a_n = \frac{1-r^{n+1}}{1-r}$.
 - e) For which r will $\{a_n\}_{n=1}^{\infty}$ converge?
- **9.** a) If $\{s_n\}_{n=1}^{\infty}$ converges to s and $s_n \ge 0$ for all $n \in \mathbb{N}$, then $s \ge 0$.
 - **b)** If $\{s_n\}_{n=1}^{\infty}$ converges to s and $\{t_n\}_{n=1}^{\infty}$ converges to t and $s_n \ge t_n$ for all $n \in \mathbb{N}$, then $s \ge t$.
 - c) If $\{s_n\}_{n=1}^{\infty}$ converges to s and $a \leq s_n \leq b$ for all $n \in \mathbb{N}$, then $a \leq s \leq b$.

10. Challenge: Let $k \in \mathbb{R}$. Show that $\lim_{n \to \infty} \frac{k^n}{n!} = 0$. Hint: $\frac{k^n}{n!} = \frac{k \cdot k \cdot k \cdots k}{1 \cdot 2 \cdot 3 \cdots n}$.