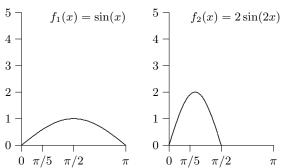
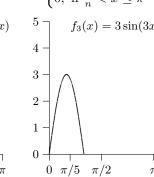
Math 331: Day 41

Read Section 4.5. Skim the first few pages of 4.6.

Problems

1. The sequence of functions $\{f_n(x)\}_{n=1}^{\infty}$ where $f_n(x) = \begin{cases} n\sin(nx), & \text{if } \\ 0, & \text{if } \frac{\pi}{n} < x \leq \pi \end{cases}$







- (a) Explain why $\lim_{n\to\infty} f_n(x) = 0$.
- (b) Determine $\lim_{n\to\infty} \int_0^{\pi} f_n(x) dx$.
- (c) Determine $\int_0^{\pi} \lim_{n \to \infty} f_n(x) dx$.
- (d) Without doing a lot of work does $\{f_n(x)\}_{n=1}^{\infty}$ converge uniformly? Explain.
- **2.** For $x \in [0,1]$ and $n \in \mathbb{N}$, define $f_n(x) = 2x + \frac{x}{n}$. Notice that f_n is differentiable, continuous, and integrable on [0,1]
 - (a) Find the pointwise limit function f(x).
 - (b) Is f(x) continuous?
 - (c) Is f(x) differentiable and if so, is $f'(x) = \lim_{n \to \infty} f'_n(x)$?
 - (d) Is f(x) integrable and if so, is $\int_0^1 f(x) dx = \lim_{n \to \infty} \int_0^1 f_n(x) dx$?
- **3.** (a) Find the pointwise limit of the sequence of functions $f_n(x) = \frac{1}{1 + x^{2n}}$ on $(-\infty, \infty)$.
 - (b) Is the convergence uniform? Explain your reasoning.

__Think about this _

- **4.** Find the pointwise limit of the series $\sum_{k=0}^{\infty} x(1-x)^k$ on the interval [0,1]. Show that the convergence is not uniform. (See Example 4.6.2.) (That is, show the sequence of partial sums $\{S_n(x)\}_{n=1}^{\infty} = \{\sum_{k=0}^{n} f_k(x)\}_{n=1}^{\infty}$ converges pointwise but not uniformly).
- **5.** Let $f_n(x) = \frac{x^n}{n!}$.
 - (a) Show $\sum_{k=0}^{\infty} f_k(x)$ converges pointwise but not uniformly on all of \mathbb{R} (i.e., show the sequence of partial sums $\{S_n(x)\}_{n=1}^{\infty} = \{\sum_{k=0}^n f_k(x)\}_{n=1}^{\infty}$ converges point wise but not uniformly).
 - (b) Show $\sum_{k=0}^{\infty} f_k(x)$ converges uniformly on [-s, s] for any $s \in \mathbb{R}$.