MATH 331

The Field Axioms

Axioms for Addition:

- 1. Closure: For all $a, b \in \mathbb{F}$, there is a unique element $a + b \in \mathbb{F}$.
- 2. Commutativity: For all $a, b \in \mathbb{F}$, a + b = b + a.
- 3. Associativity: For all $a, b, c \in \mathbb{F}$, a + (b + c) = (a + b) + c.
- 4. Identity: There exists an element of \mathbb{F} denoted by 0 so that for all $a \in \mathbb{F}$, a + 0 = a.
- 5. Inverses: For every $a \in \mathbb{F}$, there exists an element $-a \in \mathbb{F}$ so that a + (-a) = 0.

Axioms for Multiplication:

- 6. Closure: For all $a, b \in \mathbb{F}$, there is a unique number $a \cdot b$ (often written ab) in \mathbb{F} .
- 7. Commutativity: For all $a, b \in \mathbb{F}$, $a \cdot b = b \cdot a$.
- 8. Associativity: For all $a, b, c \in \mathbb{F}$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- 9. Identity: There exists an element of \mathbb{F} denoted by 1 which does not equal 0, such that for every $a \in \mathbb{F}$, $a \cdot 1 = a$.
- 10. Inverses: For every $a \in \mathbb{F}$ with $a \neq 0$, there exists an element $a^{-1} \in \mathbb{F}$ so that $a \cdot (a^{-1}) = 1$.

Distributive Axiom:

11. For all $a, b \in \mathbb{F}$, $a \cdot (b + c) = a \cdot b + a \cdot c$.

Basic Facts

THEOREM 1.0.1. Let **F** be a field.

- (1) If $a \in \mathbb{F}$, then $a \cdot 0 = 0$.
- (2) 0 does not have a multiplicative inverse.

THEOREM 1.0.2 (Uniqueness of Identities and Inverses). The additive and multiplicative identities are unique. Let \mathbb{F} be a field and let $a, b \in \mathbb{F}$.

- (*a*) If a + b = a, then b = 0;
- (*b*) If $a \cdot b = a$ and $a \neq 0$, then b = 1. For each element the additive and multiplicative inverses are unique. That is:
- (c) If a + b = 0, then b = -a.
- (*d*) If $a \cdot b = 1$, then $b = a^{-1}$.

COROLLARY 1.0.3. Let **F** be a field.

- (1) -0 = 0 and $1^{-1} = 1$.
- (2) If $a \in \mathbb{F}$, then -(-a) = a.
- (3) If $a \in \mathbb{F}$ and $a \neq 0$, then $(a^{-1})^{-1} = a$.

THEOREM 1.0.4. Let \mathbb{F} be a field and let $a, b \in \mathbb{F}$. If $a \cdot b = 0$, then either a = 0 or b = 0.

THEOREM 1.0.5. Let \mathbb{F} be a field and let $a, b \in \mathbb{F}$. Then

- (a) $(-a) \cdot b = -(a \cdot b)$ and, in particular, $(-1) \cdot b = -b$;
- (b) $(-a) \cdot (-b) = a \cdot b$.