Reading, Practice

Review Section 3.3 carefully. We are done with differential calculus! Read ahead in Section 3.4. We will begin integration next time.

The Mean Value Theorem. Let f be continuous on [a, b] and differentiable on (a, b). Then there is a point c strictly between a and b such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Using the MVT

By the end of class you should be able to prove all of the Results 1 through 5 below.

- **1.** Suppose that f is continuous on [a,b] and differentiable on (a,b). Under these hypotheses: Let $c,d \in [a,b]$ with c < d. Use the MVT on the interval [c,d] and the given information to determine the relationship between f(c) and f(d) and prove the resut.
 - (a) If f'(x) = 0 for all $x \in (a, b)$, then f is constant on [a, b].
 - (b) If f'(x) > 0 for all $x \in (a, b)$ and if $c, d \in [a, b]$ with d < d, then f(c) < f(d) (that is, f is **increasing** on [a, b].
 - (c) If f'(x) < 0 for all $x \in (a,b)$ and if $x,y \in (a,b)$ with x < y, then f(x) > f(y) (that is, f is **decreasing** on [a,b].
 - (*d*) If $f'(x) \neq 0$ for all $x \in (a, b)$, then f is one-to-one on [a, b].
- **2.** Suppose that f, g are continuous on [a,b] and differentiable on (a,b) with g'(x) = f'(x) for all $x \in (a,b)$. Then there is a constant k so that g(x) = f(x) + k on [a,b]. Hint: Consider h(x) = g(x) f(x)
- The next three problems all use the same idea: Apply the MVT to the correct function f(t) on the interval [a, x], where a is a constant that depends on the question.
- **3.** Use the MVT to prove: If $x \ge 0$, then $\sin x \le x$. (Assume Calculus I knowledge.) Hint: The result is clearly true if x = 0 (right?). So assume x > 0. Let $f(t) = \sin t$ on [0, x].
- **4.** Use the MVT to prove **Bernoulli's Inequality**: For all x > 0 and for all $n \in \mathbb{N}$,

$$(1+x)^n > 1+nx$$
.

What's f(t) this time? Note: This can be done by induction, but it is quicker with the MVT.

- **5.** Prove: If x > 1, then $\frac{x-1}{x} < \ln x < x 1$. What's f(t) this time?
- **6. The Cauchy Mean Value Theorem.** Suppose that f and g are continuous on the closed, bounded interval [a,b] and are differentiable on (a,b). Then there is a point c strictly between a and b such that

$$(g(b) - g(a))f'(c) = (f(b) - f(a))g'(c).$$

- (a) Define the auxiliary function h(x) = (g(b) g(a))f(x) (f(b) f(a))g(x). Show that h is continuous on [a,b] and differentiable on (a,b).
- (b) Show that h(a) = h(b).
- (c) Apply the MVT to h and show that c is the desired point.
- 7. Problem 7 on the back, assuming the IVTD which you are proving for Homework.

- 1. (a) Jack, Kyle
- (b) Lillie, Alana
- (c) Nan, Weixiang

(d) Liv, Michael, David

- 2. Jack, Kyle
- 3. Lillie, Alana
- 4. Nan, Weixiang
- 5. Liv, Michael, David

6. Jack, Kyle

7. Everyone else

Comments on the Current Assignment

Differentiability on Closed Intervals. We say g is **differentiable on the closed interval** [a,b] if g is differentiable at each point in the open interval (a,b) and the appropriate one-sided derivatives exist at a and b. Specifically

- 1. g is differentiable at each $x \in (a, b)$,
- 2. $\lim_{x\to a^+} \frac{g(x)-g(a)}{x-a}$ exists (and is denoted by g'(a)), and $\lim_{x\to b^-} \frac{g(x)-g(b)}{x-b}$ exists (and is denoted by g'(b)).

Note: All basic derivative rules (e.g., sum, product) carry over to functions differentiable on closed intervals.

Current Homework

- **5. Intermediate Value Theorem for Derivatives.** If f is differentiable on [a,b] and f'(a) < k < f'(b), then there is a $c \in (a,b)$ with f'(c) = k. A similar result holds if f'(a) > k > f'(b). (Note: We cannot apply the IVT because we do not know that f' is continuous on [a,b].)
 - (a) Consider the auxiliary function g(x) = f(x) kx, for $x \in [a, b]$. Since f and x are differentiable on [a, b] it follows that g is differentiable on [a, b]. Show that g'(a) < 0 < g'(b).
 - (b) Prove that g has a minimum point $c \in [a, b]$.
 - (c) From part (a), $0 < g'(b) = \lim_{x \to b^-} \frac{g(x) g(b)}{x b}$. Use the definition of one-sided limit to prove that there exists $\delta > 0$ so that if $-\delta < x b < 0$, then $0 < \frac{g(x) g(b)}{x b}$. Hint: Let $\varepsilon = g'(b)$.
 - (*d*) With this same δ prove: If $-\delta < x b < 0$, then g(x) < g(b). [This shows that g(b) is NOT the minimum value of g. A similar argument shows that g(a) is also not the minimum value of g. In other words, $c \neq a$ and $c \neq b$.]
 - (e) So $c \in (a, b)$. Prove g'(c) = 0 and then show f'(c) = k.
- **6.** True or False: The Dirichlet function D(x) is the derivative of some function F(x) on the interval [a,b]. (Is D(x)=F'(x) for some function F?) Explain.

On the next assignment-or not

7. Corollary of IVTFD. If f is differentiable on [a,b] and $f'(x) \neq 0$ for all $x \in (a,b)$, then either f'(x) < 0 for all $x \in [a,b]$ or f'(x) > 0 for all $x \in [a,b]$. (So from Problem 1, f is either always increasing or always decreasing on [a,b].)

Solutions to In-Class Problems

- **1.** Suppose that f is continuous on [a,b] and differentiable on (a,b). Under these hypotheses: Let $c,d \in [a,b]$ with c < d. Use the MVT on the interval [c,d] and the given information to determine the relationship between f(c) and f(d) and prove the resut.
 - (a) If f'(x) = 0 for all $x \in (a, b)$, then f is constant on [a, b].
 - (b) If f'(x) > 0 for all $x \in (a,b)$ and if $c,d \in [a,b]$ with d < d, then f(c) < f(d) (that is, f is **increasing** on [a,b].
 - (c) If f'(x) < 0 for all $x \in (a,b)$ and if $x,y \in (a,b)$ with x < y, then f(x) > f(y) (that is, f is **decreasing** on [a,b].
 - (*d*) If $f'(x) \neq 0$ for all $x \in (a,b)$, then f is one-to-one on [a,b]. [Hint: Contradiction or contraposition is easy.]

PROOF (a). Let $c, d \in [a, b]$ with c < d. It suffices to show that f(c) = f(d). Since f is continuous on [a, b] and differentiable on (a, b) with f'(x) = 0 for all $x \in (a, b)$, then f is continuous on [c, d] and differentiable on (c, d). So the MVT applies to f on [c, d]. Therefore, there is a point $z \in [c, d]$ so that

$$f'(z) = \frac{f(d) - f(c)}{d - c}.$$

Since f'(z) = 0, it follows that f(d) = f(c) for all $c, d \in [a, b]$. That is, f is constant.

PROOF (b). Let $c, d \in [a, b]$ with c < d. Show that f(c) < f(d). Since f is continuous on [a, b] and differentiable on (a, b) with f'(x) > 0 for all $x \in (a, b)$, then f is continuous on [c, d] and differentiable on (c, d). So the MVT applies to f on [c, d]. Therefore, there is a point $z \in [c, d]$ so that

$$\frac{f(d)-f(c)}{d-c}=f'(z)>0.$$

Because c < d, it follows f(d) - f(c) > 0. That is, f(c) < f(d).

PROOF (c). Let $c,d \in [a,b]$ with c < d. Show that f(c) > f(d). Since f is continuous on [a,b] and differentiable on (a,b) with f'(x) > 0 for all $x \in (a,b)$, then f is continuous on [c,d] and differentiable on (c,d). So the MVT applies to f on [c,d]. Therefore, there is a point $z \in [c,d]$ so that

$$\frac{f(d)-f(c)}{d-c}=f'(z)<0.$$

Because c < d, Ii follows f(d) - f(c) < 0. That is, f(c) > f(d).

PROOF (d: Contraposition.). Assume f is not one-to-one on [a,b]. Then there exist $c,d \in [a,b]$ with c < d such that f(c) = f(d). Since f is continuous on [a,b] and differentiable on (a,b) with $f'(x) \neq 0$ for all $x \in (a,b)$, then f is continuous on [c,d] and differentiable on (c,d). So the MVT applies to f on [c,d]. Therefore, there is a point $z \in [c,d]$ so that

$$f'(z) = \frac{f(d) - f(c)}{d - c} = \frac{0}{d - c} = 0.$$

2. Suppose that f, g are continuous on [a,b] and differentiable on (a,b) with g'(x) = f'(x) for all $x \in (a,b)$. Then there is a constant k so that g(x) = f(x) + k on [a,b]. Hint: Consider h(x) = g(x) - f(x)

PROOF. Let h(x) = g(x) - f(x) for all $x \in [a,b]$. Since f, g are continuous on [a,b] and differentiable on (a,b), then so is h. But h'(x) = g'(x) - f'(x) = 0 for all $x \in (a,b)$. So by Problem 1(a), h(x) = k is g(x) - f(x) = k and so g(x) = f(x) + k.

The next three problems all use the same idea: Apply the MVT to the correct function f(t) on the interval [a, x], where a is a constant that depends on the question.

- **1.** (a) Jack, Kyle
- (b) Lillie, Alana
- (c) Nan, Weixiang
- (d) Liv, Michael, David

2. Jack, Kyle

3. Use the MVT to prove: If $x \ge 0$, then $\sin x \le x$. (Assume Calculus I knowledge.) Hint: The result is clearly true if x = 0 (right?). So assume x > 0. Let $f(t) = \sin t$ on [0, x].

3. Lillie, Alana

- **PROOF.** The result is clearly true if x = 0 because sin(0) = 0. So assume x > 0. Let $f(t) = \sin t$ on [0, x] where it is continuous and f is differentiable on (0, x). By the MVT, there is a point $c \in [0, x]$ so that
- 4. Nan, Weixiang

 $1 \ge \cos(c) = f'(c) = \frac{\sin(x) - \sin(0)}{r - 0} = \frac{\sin(x)}{r}.$

5. Liv, Michael, David

Consequently, $x \ge \sin(x)$.

4. Use the MVT to prove **Bernoulli's Inequality**: For all x > 0 and for all $n \in \mathbb{N}$,

$$(1+x)^n > 1 + nx$$
.

What's f(t) this time? Note: This can be done by induction, but it is quicker with the MVT.

PROOF. Let x > 0 and $n \in \mathbb{N}$. Let $f(t) = (1+t)^n$ on [0,x]. Since f is a polynomial, it is continuous and differentiable everywhere. By the MVT, there is a point $c \in [0,x]$ so that

$$n(1+t)^{n-1} = f'(c) = \frac{(1+x)^n - (1+0)^n}{x-0}.$$

Consequently,

$$nx(1+t)^{n-1} = (1+x)^n - 1.$$

Since t > 0, it follows that (1 + t) > 1, so $(1 + t)^{n-1} > 1^{n-1} = 1$. Therefore,

$$nx < nx(1+t)^{n-1} = (1+x)^n - 1$$
 or $1+nx < (1+x)^n$.

5. Prove: If x > 1, then $\frac{x-1}{x} < \ln x < x - 1$. What's f(t) this time?

PROOF. Let $f(t) = \ln t$ on [1, x]. From Calc 1, f is continuous and differentiable on [1, x]. By the MVT, there is a point $c \in [1, x]$ so that

$$\frac{1}{c} = f'(c) = \frac{\ln x - \ln 1}{x - 1} = \frac{\ln x}{x - 1}.$$

Consequently,

$$\frac{x-1}{c} = \ln x$$
.

Since 1 < c < x, it follows that

$$\frac{x-1}{x} < \frac{x-1}{c} = \ln x < \frac{x-1}{1} = x - 1.$$

6. The Cauchy Mean Value Theorem. Suppose that f and g are continuous on the closed, bounded interval [a, b] and are differentiable on (a, b). Then there is a point c strictly between a and b such that

$$(g(b) - g(a))f'(c) = (f(b) - f(a))g'(c).$$

PROOF. Define the auxiliary function h(x) = (g(b) - g(a))f(x) - (f(b) - f(a))g(x). Since f, g are continuous on [a, b] and differentiable on (a, b), so are the constant multiples (g(b) - g(a))f(x) and (f(b) - f(a))g(x) and consequently, so is their difference h(x). Next

$$h(a) = (g(b) - g(a))f(a) - (f(b) - f(a))g(a) = g(b)f(a) - f(b)g(a) = (g(b) - g(a))f(b) - (f(b) - f(a))g(b)$$

so h(a) = h(b). Applying the MVT to h, there is point $c \in [a, b]$ so that

$$h'(c) = \frac{h(b) - h(a)}{b - a} = \frac{0}{b - a} = 0.$$

But then

$$h'(c) = (g(b) - g(a))f'(c) - (f(b) - f(a))g'(c) = 0$$

and the result follows.

7. Corollary of IVTFD. If f is differentiable on [a,b] and $f'(x) \neq 0$ for all $x \in (a,b)$, then either $f'(x) \geq 0$ for all $x \in [a,b]$ or $f'(x) \leq 0$ for all $x \in [a,b]$. (So from Problem 1, f is either always increasing or always decreasing on [a,b].)

PROOF (Contradiction). Suppose that there exist $c,d \in [a,b]$ with f'(c) < 0 and f'(d) > 0. Since f is differentiable (and so continuous) on [a,b], then f is differentiable and continuous on [c,d], so the IVTFD applies there. Since f'(c) < 0 < f'(d), there is point $z \in [c,d]$ so that f'(z) = 0. Since $[c,d] \subseteq [a,b]$, it follows that $z \in [a,b]$. This contradicts that $f'(x) \neq 0$ for all $x \in (a,b)$.