Dedekind Cuts and Real Numbers

DEFINITION 1.2.1. A *Dedekind cut* is a subset α of the rational numbers \mathbb{Q} with the following properties:

- 1. α is not empty and $\alpha \neq \mathbb{Q}$;
- 2. if $p \in \alpha$ and q < p, then $q \in \alpha$;

3. if $p \in \alpha$, then there is some $r \in \alpha$ such that r > p (i.e., α has no maximal element).

DEFINITION 1.2.2. The set of *real numbers* \mathbb{R} is the collection of all Dedekind cuts. Two real numbers α and β are *equal* if and only if both cuts are the same subset of \mathbb{Q} .

NOTATION. In the material that follows, unaccented lowercase letters of the Roman alphabet (a, b, c, ..., p, q, r, s, t, ..., z) will always indicate **rational numbers**, while lower case Greek letters $(\alpha, \beta, \gamma, \lambda, ...)$ will indicate **Dedekind cuts** (real numbers).

FACT 1.1. If α and β are cuts and $\alpha \neq \beta$, then either $\alpha \subset \beta$ or $\beta \subset \alpha$ (but not both).

ANALYSIS: This property is not true for sets in general. For example, if $A = \{x, y, z\}$ and $B = \{w, x\}$, then $A \neq B$, $A \not\subset B$, and $B \not\subset A$. **STRATEGY:** Proving $P \Rightarrow (Q \lor R)$ is equivalent to proving $[P \land (\sim Q)] \Rightarrow R$.

Proof. Assume $\alpha \neq \beta$ and $\alpha \not\subset \beta$. We must show $\beta \subset \alpha$. Let $b \in \beta$. (Show $b \in \alpha$). Since $\alpha \not\subset \beta$, $\exists a \in \alpha$ so that $a \notin \beta$. Thus, $a \neq b$. By cut property 2 for β , it follows that $a \not< b$. So b < a. By cut property 2 for α , it follows that $b \in \alpha$.

EXERCISE 1.2.3. Let α be a cut. If $c \in \mathbb{Q}$ and $c \notin \alpha$, then c > p for all $p \in \alpha$. (What method of proof is helpful?)

EXERCISE 1.2.4 (Corollary to Exercise 1.2.3). Let α be a cut and $c, d \in \mathbb{Q}$. If d > c and and $c \notin \alpha$, then $d \notin \alpha$.

THEOREM 1.2.5. For any rational number r the set $\hat{r} = \{q \in \mathbb{Q} : q < r\}$ is a cut, and hence a real number.

Proof. This is a homework problem. Demonstrate that \hat{r} satisfies the three conditions of a cut.

- 1. Prove $\hat{r} \neq \emptyset$. (Find a rational in \hat{r} .) Also prove $\hat{r} \neq \mathbb{Q}$. (Find a rational not in \hat{r} .)
- 2. Let $p \in \hat{r}$ and q < p. Show $q \in \hat{r}$.
- 3. Let $p \in \hat{r}$. Find a rational q so that q > p and $q \in \hat{r}$.

EXAMPLE 1.2.6. Define the cuts $\hat{1}, -\frac{2}{3}$, and $\hat{0}$.

EXERCISE 1.2.7. In trying to define the cut for the real number $\sqrt{2}$,

1. Jon suggests:
$$\sqrt{2} = \{q \in \mathbb{Q} : q < \sqrt{2}\}$$
. Does this work?

2. Jane suggests: $\sqrt{2} = \{q \in \mathbb{Q} : q^2 < 2\}$. Does this work?

3. Jim suggests: Does $\sqrt{2} = \{q \in \mathbb{Q} : q^2 < 2 \text{ or } q < 0\}$ work?

EXAMPLE 1.2.8. What cut (real number) does the following represent:

$$\left\{q \in \mathbb{Q} : \exists n \in \mathbb{N} \text{ such that } q \leq \left(1 + \frac{1}{n}\right)^n\right\}?$$

DEFINITION 1.2.9. For two real numbers (cuts) α and β , we say $\alpha < \beta$ if $\alpha \subset \beta$. (The inclusion is proper, $\alpha \neq \beta$.)

EXERCISE 1.2.10. Let $r \in \mathbb{Q}$. If $\hat{r} < \alpha$, then $r \in \alpha$. What method of proof might be useful?

All rationals up to a point λ Figure 1.1: A cut determining the real number λ .

.....).....)

۰λ

THEOREM 1.2.11 (Trichotomy). For any real number (cut) *α*, exactly one of the following holds:

$$\alpha > \hat{0}, \quad \alpha = \hat{0}, \quad \text{or} \quad \alpha < \hat{0}.$$

Proof. Assume α is a cut (real). Either $\alpha = \hat{0}$ or $\alpha \neq \hat{0}$. In the first case, if $\alpha = \hat{0}$, then $\alpha \not\subset \hat{0}$ and $\hat{0} \not\subset \alpha$, so $\alpha \not< \hat{0}$ and $\hat{0} \not< \alpha$.

In the other case, $\alpha \neq \hat{0}$, so by Fact 1.1 either $\alpha \subset \hat{0}$ or $\hat{0} \subset \alpha$ (but not both). That is, if $\alpha \neq \hat{0}$, either $\alpha < \hat{0}$ or $\alpha > \hat{0}$ (but not both).

DEFINITION 1.2.12. Let α , β be a cut. We say α is **positive** if $\alpha > \hat{0}$ and α is **negative** if $\alpha < \hat{0}$.

EXERCISE 1.2.13. True or false (explain):

1. A cut α is positive if and only if $0 \in \alpha$.

2. A cut α is negative if and only if $0 \notin \alpha$.

Addition

DEFINITION 1.2.14. Let $\alpha, \beta \in \mathbb{R}$ (be cuts). Then the **sum** of α and β is the set

$$\alpha + \beta = \{r \in \mathbb{Q} : r$$

EXERCISE 1.2.15. Let $\alpha, \beta \in \mathbb{R}$ (be cuts). If $a \in \alpha$ and $b \in \beta$, then $a + b \in \alpha + \beta$.

THEOREM 1.2.16. If $\alpha, \beta \in \mathbb{R}$, then $\alpha + \beta \in \mathbb{R}$, i.e., $\alpha + \beta$ is a cut.

Proof. We must show that $\alpha + \beta$ satisfies the three cut properties.

- 1. (a) Show $\alpha + \beta \neq \emptyset$ and (b) $\alpha + \beta \neq \mathbb{Q}$.
- 2. Let $x \in \alpha + \beta$ and let y < x, where $x, y \in \mathbb{Q}$. Show $y \in \alpha + \beta$.
- 3. Let $x \in \alpha + \beta$. Show there exists $z \in \alpha + \beta$ with z > x.

COROLLARY 1.2.17. Let α and β be reals (cuts). Define $\alpha \oplus \beta = \{p + q : p \in \alpha, q \in \beta\}$. Then

$$\alpha + \beta = \alpha \oplus \beta.$$

ANALYSIS: Remember, cuts (real numbers) are sets of rationals. This is a set equality so it requires two subset proofs.

Proof. Check that $\alpha \oplus \beta \subseteq \alpha + \beta$ is an immediate consequence of Exercise 1.2.15.

Now we show $\alpha + \beta \subseteq \alpha \oplus \beta$. Let $r \in \alpha + \beta$. (Show $r \in \alpha \oplus \beta$.) By definition of $\alpha + \beta$, we have $r where <math>p \in \alpha$ and $q_1 \in \beta$. Let q = r - p. Then $q \in \mathbb{Q}$ because $r, p \in \mathbb{Q}$. Further $r so <math>q = r - p < q_1$. So by cut property 2 for β , it follows that $q \in \beta$. Since q = r - p, it follows that r = p + q where $p \in \alpha$ and $q \in \beta$. This means $r \in \alpha \oplus \beta$.

Using Corollary 1.2.17 and properties of the rationals, it is easy to show

EXERCISE 1.2.18. Addition of real numbers is commutative and associative. That is,

- 1. For all reals (cuts) α and β , we have $\alpha + \beta = \beta + \alpha$.
- 2. For all reals (cuts) α , β , and γ , $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.

THEOREM 1.2.19. For any real number α , $\alpha + \hat{0} = \alpha$.

STRATEGY: Remember, cuts (real numbers) are sets of rationals. This is a set equality so it requires two subset proofs. Make use of Corollary 1.2.17.

Exercise 1.2.15: Mike 1(a): David and Liv 1(b): Jack and Kyle 2: Alana and Lillie 3: Nan, Weixiang

What is the difference in the definitions of $\alpha + \beta$ and $\alpha \oplus \beta$?

Proof. First we show $\alpha + \hat{0} \subseteq \alpha$. Let $r \in \alpha + \hat{0}$. (Show $r \in \alpha$.) By Corollary 1.2.17 r = p + q, where $p \in \alpha$ and $q \in \hat{0}$. By definition of $\hat{0}$, we have q < 0. Thus $r = p + q , so by cut property (2) of <math>\alpha$, it follows that $r \in \alpha$.

Next we show $\alpha \subseteq \alpha + \hat{0}$. Let $p \in \alpha$. (Show $p \in \alpha + \hat{0}$.) Since α is a cut, by property (3) there exists a rational $s \in \alpha$ so that p < s. Then p - s < 0 and $p - s \in \mathbb{Q}$ because $s, p \in \mathbb{Q}$. So by definition $p - s \in \hat{0}$. Then p = s + (p - s), where $s \in \alpha$ and $p - s \in \hat{0}$. So by Corollary 1.2.17 $p \in \alpha + \hat{0}$.

DEFINITION 1.2.20. We say that $\hat{0}$ is the **additive identity** of \mathbb{R} .

THEOREM 1.2.21. The **additive identity** of \mathbb{R} is unique. That is, if $\lambda \in \mathbb{R}$ (is a cut) and and $\alpha + \lambda = \alpha$ for all $\alpha \in \mathbb{R}$, then $\lambda = \hat{0}$.

EXERCISE 1.2.22. Prove this result. You should have done uniqueness proofs of identity elements in Math 135 and 204.

DEFINITION 1.2.23. If for two real numbers α and β we have $\alpha + \beta = \hat{0}$, then we say that β is the **additive inverse** of α .

THEOREM 1.2.24. Any real number α has an additive inverse.

ANALYSIS: IF This is the hardest proof in this section and we will not cover it in class. But read through it.

Proof. Let $\alpha \in \mathbb{R}$. Let

$$\beta = \{q \in \mathbb{Q} : \exists s \in \mathbb{Q} \text{ such that } s > q \text{ and } \forall p \in \alpha, p + s < 0\}$$

We will show that β is the additive inverse of α . To do so we must show that β is a cut and that $\alpha + \beta = \hat{0}$.

First we show that β is a cut by verifying the three cut properties.

1. Since $\alpha \neq \mathbb{Q}$ (why?), there exists $d \in \mathbb{Q}$ such that $d \notin \alpha$. By Exercise 1.2.3 p < d for all $p \in \alpha$. So p - d < 0 for all $p \in \alpha$. Let s = -d and q = -d - 1. Then s > q and both are rational since d is. Then for any $p \in \alpha$,

$$p+s=p-d<0.$$

So $q \in \beta$, so $\beta \neq \emptyset$.

To show that $\beta \neq \mathbb{Q}$, let $p \in \alpha$. Let q = -p. If *s* is any rational such that s > q, then

$$p + s > p + q = p - p = 0.$$

So $q \notin \beta$, so $\beta \neq \mathbb{Q}$.

- 2. Let $q \in \beta$ and let *a* be a rational with a < q. (Show $a \in \beta$.) By definition of β , there exists a rational *s* so that s > q and p + s < 0 for all $p \in \alpha$. But a < q < s and we still have and p + s < 0 for all $p \in \alpha$. So $a \in \beta$.
- 3. Let $q \in \beta$. (Find $r \in \mathbb{Q}$ so that r > q and $r \in \beta$.) By definition of β there is a rational *s* so that s > q and p + s < 0 for all $p \in \alpha$. Let $r = \frac{s+q}{2}$. Then *r* is rational since *s* and *q* are. But

$$\frac{q+q}{2} < \frac{s+q}{2} < \frac{s+s}{2}.$$

In other words, q < r < s. Since we know p + s < 0 for all $p \in \alpha$, it follows that $r \in \beta$.

So β is a cut.

We would like to define the inverse β to be

$$\{q \in \mathbb{Q} : -q \notin \alpha\}$$

his does not work for \hat{r} for $r \in$

but this does not work for \hat{r} for $r \in \mathbb{Q}$. In such a case, β would have a maximal element. *Now we show that* $\alpha + \beta = \hat{0}$. This requires two subset proofs. First we show $\alpha + \beta \subseteq \hat{0}$. Let $r \in \alpha$ and $q \in \beta$. By Corollary 1.2.17 we must show $r + q \in \hat{0}$, that is r + q < 0. Since $q \in \beta$, there is a rational *s* such that s > q and p + s < 0 for all $p \in \alpha$. In particular, since $r \in \alpha$, we have r + s < 0. But then r + q < r + s < 0, so $r + q \in \hat{0}$.

Next we show $\hat{0} \subseteq \alpha + \beta$. This is the hardest part of the proof.

Let $t \in \hat{0}$. (We must show that t = r + q, where $r \in \alpha$ and $q \in \beta$.) By Theorem 1.2.5, t < 0. Now take any $a \in \alpha$ and $b \in \beta$. By definition of β there exists s > b so that p + s < 0 for all $p \in \alpha$. Since $a \in \alpha$ and s > b, it follows that a + b < a + s < 0.

Since α is a cut there exists $c \in \mathbb{Q}$ with $c \notin \alpha$. By Exercise 1.2.3 c > a. Choose $n \in \mathbb{N}$ so that $n > \frac{c-a}{-t}$. It follows that a - nt > c. Consider the finite (increasing) list of rationals:

$$a, a - \frac{t}{2}, a - \frac{2t}{2}, a - \frac{3t}{2}, a - \frac{4t}{2}, \dots, a - \frac{2nt}{2} = a - nt.$$

Since a - nt > c and $c \notin \alpha$, by Exercise 1.2.4 it follows that $a - nt \notin \alpha$. So in the finite list above, there is a largest element $a - \frac{kt}{2} \in \alpha$. This means that both $a - \frac{(k+1)t}{2}$ and $a - \frac{(k+2)t}{2}$ are not in α .

Let $r = a - \frac{kt}{2}$, $q = -a + \frac{(k+2)t}{2}$, and $s = -a + \frac{(k+1)t}{2}$, all of which are rational since $a, k, t \in \mathbb{Q}$. Since t < 0 and $q = s + \frac{t}{2}$, it follows that s > q. Notice that for all $p \in \alpha$, since $a - \frac{(k+1)t}{2} \notin \alpha$ by Exercise 1.2.3 it follows that $p < a - \frac{(k+1)t}{2}$. Thus for all $p \in \alpha$,

$$s+p < \left(-a + \frac{(k+1)t}{2}\right) + \left(a - \frac{(k+1)t}{2}\right) = 0.$$

Since s > q, by definition $q \in \beta$.

Finally,

$$r + q = \left(a - \frac{kt}{2}\right) + \left(-a + \frac{(k+2)t}{2}\right) = \frac{2t}{2} = t,$$

where $r \in \alpha$ and $q \in \beta$. So $t \in \alpha + b$.

THEOREM 1.2.25. Additive inverses are unique. That is, if α , β , $\lambda \in \mathbb{R}$ and $\alpha + \beta = \hat{0} = \alpha + \lambda$, then $\beta = \lambda$.

EXERCISE 1.2.26. Prove this result. Hint: Consider the expression $\beta + \alpha + \lambda$.

EXERCISE 1.2.27. Let $\alpha \in \mathbb{R}$ (cut). If $a \in \alpha$ and $b \in (-\alpha)$, then a < -b. This is the same as saying: If $a \in \alpha$ and $a \ge -b$, then $-b \notin (-\alpha)$. This is the same as saying: If $b \in (-\alpha)$ and $a \ge -b$, then $a \notin \alpha$.