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Dedekind Cuts and Real Numbers

DEFINITION 1.2.1. A Dedekind cut is a subset a of the rational numbers Q with the following
properties:

1. o is not empty and & # Q;

2. ifpeaandg<p thenge€a;, -
A

3. if p € a, then there is some r € a such that ¥ > p (i.e., « has no maximal element).
All rationals up to a point A
Figure 1.1: A cut determining the real

DEFINITION 1.2.2. The set of real numbers R is the collection of all Dedekind cuts. Two real number A.

numbers « and B are equal if and only if both cuts are the same subset of Q.

NOTATION. = In the material that follows, unaccented lowercase letters of the Roman
alphabet (a,b,¢c,...,p,q,7,5,t,...,z) will always indicate rational numbers, while
lower case Greek letters («, B,, A, . ..) will indicate Dedekind cuts (real numbers).

FACT 1.1. If « and B are cuts and « # B, then either « C  or B C a (but not both).

ANALYsIs: This property is not true for sets in general. For example, if A =
{x,y,z} and B = {w, x}, then A # B, A ¢ B,and B ¢ A. &
STRATEGY: Proving P = (Q V R) is equivalent to proving [P A (~ Q)] = R. &

Proof. Assume a # B and a ¢ B. We must show B C a. Letb € B. (Show b € ).
Since w ¢ B, 3a € a so thata ¢ B. Thus, a # b. By cut property 2 for B, it follows
thata £ b. So b < a. By cut property 2 for a, it follows that b € a. O

EXERCISE 1.2.3. Let w be a cut. If c € Q and ¢ € &, then ¢ > p for all p € a. (What method of
proof is helpful?)

EXERCISE 1.2.4 (Corollary to Exercise 1.2.3). Leta be a cutand ¢,d € Q. If d > cand and ¢ ¢ «,
thend ¢ .

THEOREM 1.2.5. For any rational number r the set 7 = {q € Q : g < r} is a cut, and hence a
real number.

Proof. This is a homework problem. Demonstrate that 7 satisfies the three condi-
tions of a cut.

1. Prove 7 # @. (Find a rational in 7.) Also prove 7 # Q. (Find a rational not in 7.)
2. Letp € #and g < p. Show g € 7.

3. Let p € 7. Find a rational g so that g > pand q € 7.

—

EXAMPLE 1.2.6. Define the cuts 1, —%, and 0.
EXERCISE 1.2.7. In trying to define the cut for the real number V2,
1. Jon suggests: /2 = {q €Q:g< \@} Does this work?

2. Jane suggests: V2 = {g € Q: 4> < 2}. Does this work?
3. Jim suggests: Does v2 = {g € Q:q* <2 orq < 0} work?

EXAMPLE 1.2.8. What cut (real number) does the following represent:

n
{qu:Eneleuchthatqg <1+%) }?

DEFINITION 1.2.9. For two real numbers (cuts) « and 8, wesay &« < Bifa C B. (The
inclusion is proper, & # B.)

EXERCISE 1.2.10. Let r € Q. If # < &, then r € . What method of proof might be useful?



THEOREM 1.2.11 (Trichotomy). For any real number (cut) a, exactly one of the following
holds:

A

a>0, a=0 or a<0.

A

Proof. Assume « is a cut (real). Either & = 0 ora # 0. In the first case, if & = 0,
thena ¢ 0and 0 ¢ &, soa £ 0 and 0 £ «.

In the other case, & # 0, so by Fact 1.1 either &« C 0 or 0 C & (but not both). That
is, if &« # 0, either « < 0 or & > 0 (but not both). O

DEFINITION 1.2.12. Let , B be a cut. We say « is positive if & > 0 and « is negative if a < 0.

EXERCISE 1.2.13. True or false (explain):
1. A cut « is positive if and only if 0 € .

2. A cut « is negative if and only if 0 ¢ a.

Addition

DEFINITION 1.2.14. Let &, 8 € R (be cuts). Then the sum of « and S is the set
a+p={reQ:r<p+gq, wherep € aandqg € S}.

EXERCISE 1.2.15. Leta, B € R (becuts). fa e aand b € B, thena+b € a + .

THEOREM 1.2.16. If o, f € R, thena + B € R, i.e,, « + B is a cut.

Proof. We must show that o + f satisfies the three cut properties. Exercise 1.2.15: Mike
1(a): David and Liv

1. (a) Show a + B % @ and (b) & + B # Q. 1(b): Jack and Kyle
2: Alana and Lillie

2. Letx € a4+ B and lety < x, where x,y € Q. Show y € a + . 3: Nan, Weixiang

3. Let x € a + B. Show there exists z € « +  with z > x.
O

COROLLARY 1.2.17. Let & and f be reals (cuts). Definea @ 8 ={p+q:p € a,q € B}. Then What is the difference in the definitions
of « + B and a B ?
x+B=adp.
ANALYSIS: Remember, cuts (real numbers) are sets of rationals. This is a set equal-
ity so it requires two subset proofs. &

Proof. Check that « ® B C a +  is an immediate consequence of Exercise 1.2.15.
Now we show & + 8 C a @ B. Letr € a 4 B. (Show r € a @ B.) By definition of
«+ B, wehaver < p+q; wherep € aandq; € B. Letq = r —p. Theng € Q
because r,p € Q. Furtherr < p+4q1s0qg = r —p < g1. So by cut property 2 for
B, it follows that g € B. Since g = r — p, it follows that r = p 4+ g where p € a and
g € B. This means v € a @ B. O

Using Corollary 1.2.17 and properties of the rationals, it is easy to show

EXERCISE 1.2.18. Addition of real numbers is commutative and associative. That is,
1. For all reals (cuts) « and B, we have a 4+ f = B + «.
2. For all reals (cuts) &, B, and vy, (a +B) + v =a + (B+ 7).

THEOREM 1.2.19. For any real number «, « + 0=a.

STRATEGY: Remember, cuts (real numbers) are sets of rationals. This is a set equal-
ity so it requires two subset proofs. Make use of Corollary 1.2.17. &



MATH 331

Proof. First we show a +0 C a. Letr € a +0. (Show r € a.) By Corollary 1.2.17
r = p+gq,wherep € xand q € 0. By definition of 0, we have ¢ < 0. Thus
r=p+4g < p+0=p,so by cut property (2) of «, it follows that r € a.

Next we show & C a + 0. Let p € a. (Show p € a + 0.) Since « is a cut, by
property (3) there exists a rational s € a sothatp < s. Thenp —s < 0and
p —s € Qbecause s, p € Q. So by definition p —s € 0. Then p = s + (p — s), where
s €aand p —s € 0. So by Corollary 1.2.17 p € a + 0. O

DEFINITION 1.2.20. We say that 0 is the additive identity of R.

THEOREM 1.2.21. The additive identity of R is unique. That is, if A € R (is a cut) and and
a+A=unforall« € R, then A =0.

EXERCISE 1.2.22. Prove this result. You should have done uniqueness proofs of identity
elements in Math 135 and 204.

DEFINITION 1.2.23. If for two real numbers « and 8 we have a + 8 = 0, then we say that § is
the additive inverse of «.

THEOREM 1.2.24. Any real number « has an additive inverse.

ANALYSTS: s This is the hardest proof in this section and we will not cover it in
class. But read through it. &

Proof. Leta € R. Let
B={9€Q:3s€cQsuchthats >gand Vp € a,p+s < 0}.

We will show that B is the additive inverse of . To do so we must show that § is a
cut and that a + 8 = 0.

First we show that B is a cut by verifying the three cut properties.

1. Since a # Q (why?), there exists d € Q such that d ¢ a. By Exercise 1.2.3 p < d
forallpca. Sop—d <Oforallp € a. Lets = —dand g = —d — 1. Thens > g
and both are rational since d is. Then for any p € «a,

p+s=p—d<0.

Soq e B,s0pB #Q.
To show that § # Q, let p € a. Let g = —p. If 5 is any rational such thats > g,
then

pts>p+tgq=p—p=0.

Soq ¢ B,so B #Q.

2. Letg € B and let a be a rational with a < g. (Show a € B.) By definition of B,
there exists a rational s so that s > gand p+s < Oforall p € a. Buta < g <s
and we still have and p+s < O forall p € x. Soa € .

3. Letg € B. (Findr € Qsothatr > gand r € B.) By definition of § there is a
s+

rational s so that s > g and p+s < 0 for all p € a. Let r = 5. Then r is rational

since s and g are. But
g+q s+q s+s
2 S 2 ST
In other words, g < r < s. Since we know p +s < 0 for all p € a, it follows that

rep.

So B is a cut.
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We would like to define the inverse j to
be

{7€Q:—q¢a}
but this does not work for 7 for r € Q.
In such a case, § would have a maximal
element.
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Now we show that « + p = 0. This requires two subset proofs. First we show
a+p C0.Letr € aand q € B. By Corollary 1.2.17 we must show r + g € 0, that
isr+¢q < 0. Since g € B, there is a rational s such that s > gand p+s < 0 for all
p € a. In particular, since r € o, we have r +s < 0. Butthenr4+¢q <r+s <0, so
r+ge¢€ 0.

Next we show 0 C a + B. This is the hardest part of the proof.

Lett € 0. (We must show thatt = r + g, where r € a and g € B.) By Theo-
rem 1.2.5,f < 0. Now take any 2 € « and b € B. By definition of B there exists
s > bsothatp+s < Oforall p € a. Sincea € aands > b, it follows that
a+b<a+s<0.

Since & is a cut there exists ¢ € Q with ¢ € «a. By Exercise 1.2.3 ¢ > a. Choose
n € N so that n > <. It follows that a — nt > c. Consider the finite (increasing)
list of rationals:

t 2t 3t 4t 2nt
a,0—50—%5,4—%,4—%,...,4— =% =a—nt.

Sincea —nt > cand ¢ ¢ w, by Exercise 1.2.4 it follows that a — nt ¢ a. So in

the finite list above, there is a largest element a — % € «. This means that both

a—@amda—(k%z)t are not in «a.

Letr = a— %, qg=—a+ (k-;Z)t, ands = —a + (k?)t, all of which are rational
since a,k,t € Q. Sincet < Oand g =5+ %, it follows that s > q. Notice that for all
p € a, since a — (kzl)t ¢ « by Exercise 1.2.3 it follows that p < a — (k%l)t Thus for
all p € a,

s+p< <a+(kzl)t> + (a(kzl)t) =0.
Since s > g, by definition g € B.
Finally,
r+q=(a—%)+(-a+ B2 =% =y,
wherer cxand g € B. Sot € o+ b. O

THEOREM 1.2.25. Additive inverses are unique. Thatis, if #,5,A € Rand a + § = O=a+A,
then g = A.

EXERCISE 1.2.26. Prove this result. Hint: Consider the expression f+ a + A.

EXERCISE 1.2.27. Leta € R (cut). If a € a and b € (—a), then a < —b.
This is the same as saying: If 2 € « and a > —b, then —b ¢ (—«).
This is the same as saying: If b € (—a) and a > —b, then a ¢ a.
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