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Dedekind Cuts and Real Numbers

DEFINITION 1.2.1. A Dedekind cut is a subset α of the rational numbers Q with the following
properties:

1. α is not empty and α 6= Q;

2. if p ∈ α and q < p, then q ∈ α;

3. if p ∈ α, then there is some r ∈ α such that r > p (i.e., α has no maximal element). ︸ ︷︷ ︸λ

All rationals up to a point λ

)

Figure 1.1: A cut determining the real
number λ.DEFINITION 1.2.2. The set of real numbers R is the collection of all Dedekind cuts. Two real

numbers α and β are equal if and only if both cuts are the same subset of Q.

NOTATION. Z In the material that follows, unaccented lowercase letters of the Roman
alphabet (a, b, c, . . . , p, q, r, s, t, . . . , z) will always indicate rational numbers, while
lower case Greek letters (α, β, γ, λ, . . . ) will indicate Dedekind cuts (real numbers).

FACT 1.1. If α and β are cuts and α 6= β, then either α ⊂ β or β ⊂ α (but not both).

analysis: This property is not true for sets in general. For example, if A =

{x, y, z} and B = {w, x}, then A 6= B, A 6⊂ B, and B 6⊂ A. ♦
strategy: Proving P⇒ (Q ∨ R) is equivalent to proving [P ∧ (∼ Q)]⇒ R. ♦

Proof. Assume α 6= β and α 6⊂ β. We must show β ⊂ α. Let b ∈ β. (Show b ∈ α).
Since α 6⊂ β, ∃a ∈ α so that a /∈ β. Thus, a 6= b. By cut property 2 for β, it follows
that a 6< b. So b < a. By cut property 2 for α, it follows that b ∈ α.

EXERCISE 1.2.3. Let α be a cut. If c ∈ Q and c /∈ α, then c > p for all p ∈ α. (What method of
proof is helpful?)

EXERCISE 1.2.4 (Corollary to Exercise 1.2.3). Let α be a cut and c, d ∈ Q. If d > c and and c /∈ α,
then d /∈ α.

THEOREM 1.2.5. For any rational number r the set r̂ = {q ∈ Q : q < r} is a cut, and hence a
real number.

Proof. This is a homework problem. Demonstrate that r̂ satisfies the three condi-
tions of a cut.

1. Prove r̂ 6= ∅. (Find a rational in r̂.) Also prove r̂ 6= Q. (Find a rational not in r̂.)

2. Let p ∈ r̂ and q < p. Show q ∈ r̂.

3. Let p ∈ r̂. Find a rational q so that q > p and q ∈ r̂.

EXAMPLE 1.2.6. Define the cuts 1̂, −̂ 2
3 , and 0̂.

EXERCISE 1.2.7. In trying to define the cut for the real number
√

2,

1. Jon suggests:
√

2 =
{

q ∈ Q : q <
√

2
}

. Does this work?

2. Jane suggests:
√

2 =
{

q ∈ Q : q2 < 2
}

. Does this work?

3. Jim suggests: Does
√

2 =
{

q ∈ Q : q2 < 2 or q < 0
}

work?

EXAMPLE 1.2.8. What cut (real number) does the following represent:{
q ∈ Q : ∃n ∈N such that q ≤

(
1 +

1
n

)n}
?

DEFINITION 1.2.9. For two real numbers (cuts) α and β, we say α < β if α ⊂ β. (The
inclusion is proper, α 6= β.)

EXERCISE 1.2.10. Let r ∈ Q. If r̂ < α, then r ∈ α. What method of proof might be useful?
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THEOREM 1.2.11 (Trichotomy). For any real number (cut) α, exactly one of the following
holds:

α > 0̂, α = 0̂, or α < 0̂.

Proof. Assume α is a cut (real). Either α = 0̂ or α 6= 0̂. In the first case, if α = 0̂,
then α 6⊂ 0̂ and 0̂ 6⊂ α, so α 6< 0̂ and 0̂ 6< α.

In the other case, α 6= 0̂, so by Fact 1.1 either α ⊂ 0̂ or 0̂ ⊂ α (but not both). That
is, if α 6= 0̂, either α < 0̂ or α > 0̂ (but not both).

DEFINITION 1.2.12. Let α, β be a cut. We say α is positive if α > 0̂ and α is negative if α < 0̂.

EXERCISE 1.2.13. True or false (explain):

1. A cut α is positive if and only if 0 ∈ α.

2. A cut α is negative if and only if 0 6∈ α.

Addition

DEFINITION 1.2.14. Let α, β ∈ R (be cuts). Then the sum of α and β is the set

α + β = {r ∈ Q : r < p + q, where p ∈ α and q ∈ β} .

EXERCISE 1.2.15. Let α, β ∈ R (be cuts). If a ∈ α and b ∈ β, then a + b ∈ α + β.

THEOREM 1.2.16. If α, β ∈ R, then α + β ∈ R, i.e., α + β is a cut.

Proof. We must show that α + β satisfies the three cut properties. Exercise 1.2.15: Mike
1(a): David and Liv
1(b): Jack and Kyle
2: Alana and Lillie
3: Nan, Weixiang

1. (a) Show α + β 6= ∅ and (b) α + β 6= Q.

2. Let x ∈ α + β and let y < x, where x, y ∈ Q. Show y ∈ α + β.

3. Let x ∈ α + β. Show there exists z ∈ α + β with z > x.

COROLLARY 1.2.17. Let α and β be reals (cuts). Define α⊕ β = {p + q : p ∈ α, q ∈ β}. Then What is the difference in the definitions
of α + β and α⊕ β?

α + β = α⊕ β.

analysis: Remember, cuts (real numbers) are sets of rationals. This is a set equal-
ity so it requires two subset proofs. ♦

Proof. Check that α⊕ β ⊆ α + β is an immediate consequence of Exercise 1.2.15.
Now we show α + β ⊆ α⊕ β. Let r ∈ α + β. (Show r ∈ α⊕ β.) By definition of

α + β, we have r < p + q1 where p ∈ α and q1 ∈ β. Let q = r − p. Then q ∈ Q

because r, p ∈ Q. Further r < p + q1 so q = r − p < q1. So by cut property 2 for
β, it follows that q ∈ β. Since q = r− p, it follows that r = p + q where p ∈ α and
q ∈ β. This means r ∈ α⊕ β.

Using Corollary 1.2.17 and properties of the rationals, it is easy to show

EXERCISE 1.2.18. Addition of real numbers is commutative and associative. That is,

1. For all reals (cuts) α and β, we have α + β = β + α.

2. For all reals (cuts) α, β, and γ, (α + β) + γ = α + (β + γ).

THEOREM 1.2.19. For any real number α, α + 0̂ = α.

strategy: Remember, cuts (real numbers) are sets of rationals. This is a set equal-
ity so it requires two subset proofs. Make use of Corollary 1.2.17. ♦
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Proof. First we show α + 0̂ ⊆ α. Let r ∈ α + 0̂. (Show r ∈ α.) By Corollary 1.2.17

r = p + q, where p ∈ α and q ∈ 0̂. By definition of 0̂, we have q < 0. Thus
r = p + q < p + 0 = p, so by cut property (2) of α, it follows that r ∈ α.

Next we show α ⊆ α + 0̂. Let p ∈ α. (Show p ∈ α + 0̂.) Since α is a cut, by
property (3) there exists a rational s ∈ α so that p < s. Then p − s < 0 and
p− s ∈ Q because s, p ∈ Q. So by definition p− s ∈ 0̂. Then p = s + (p− s), where
s ∈ α and p− s ∈ 0̂. So by Corollary 1.2.17 p ∈ α + 0̂.

DEFINITION 1.2.20. We say that 0̂ is the additive identity of R.

THEOREM 1.2.21. The additive identity of R is unique. That is, if λ ∈ R (is a cut) and and
α + λ = α for all α ∈ R, then λ = 0̂.

EXERCISE 1.2.22. Prove this result. You should have done uniqueness proofs of identity
elements in Math 135 and 204.

DEFINITION 1.2.23. If for two real numbers α and β we have α + β = 0̂, then we say that β is
the additive inverse of α.

THEOREM 1.2.24. Any real number α has an additive inverse.

analysis: Z This is the hardest proof in this section and we will not cover it in
class. But read through it. ♦

Proof. Let α ∈ R. Let We would like to define the inverse β to
be

{q ∈ Q : −q /∈ α}
but this does not work for r̂ for r ∈ Q.
In such a case, β would have a maximal
element.

β = {q ∈ Q : ∃s ∈ Q such that s > q and ∀p ∈ α, p + s < 0} .

We will show that β is the additive inverse of α. To do so we must show that β is a
cut and that α + β = 0̂.

First we show that β is a cut by verifying the three cut properties.

1. Since α 6= Q (why?), there exists d ∈ Q such that d /∈ α. By Exercise 1.2.3 p < d
for all p ∈ α. So p− d < 0 for all p ∈ α. Let s = −d and q = −d− 1. Then s > q
and both are rational since d is. Then for any p ∈ α,

p + s = p− d < 0.

So q ∈ β, so β 6= ∅.

To show that β 6= Q, let p ∈ α. Let q = −p. If s is any rational such that s > q,
then

p + s > p + q = p− p = 0.

So q /∈ β, so β 6= Q.

2. Let q ∈ β and let a be a rational with a < q. (Show a ∈ β.) By definition of β,
there exists a rational s so that s > q and p + s < 0 for all p ∈ α. But a < q < s
and we still have and p + s < 0 for all p ∈ α. So a ∈ β.

3. Let q ∈ β. (Find r ∈ Q so that r > q and r ∈ β.) By definition of β there is a
rational s so that s > q and p + s < 0 for all p ∈ α. Let r = s+q

2 . Then r is rational
since s and q are. But

q + q
2

<
s + q

2
<

s + s
2

.

In other words, q < r < s. Since we know p + s < 0 for all p ∈ α, it follows that
r ∈ β.

So β is a cut.
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Now we show that α + β = 0̂. This requires two subset proofs. First we show
α + β ⊆ 0̂. Let r ∈ α and q ∈ β. By Corollary 1.2.17 we must show r + q ∈ 0̂, that
is r + q < 0. Since q ∈ β, there is a rational s such that s > q and p + s < 0 for all
p ∈ α. In particular, since r ∈ α, we have r + s < 0. But then r + q < r + s < 0, so
r + q ∈ 0̂.

Next we show 0̂ ⊆ α + β. This is the hardest part of the proof.
Let t ∈ 0̂. (We must show that t = r + q, where r ∈ α and q ∈ β.) By Theo-

rem 1.2.5, t < 0. Now take any a ∈ α and b ∈ β. By definition of β there exists
s > b so that p + s < 0 for all p ∈ α. Since a ∈ α and s > b, it follows that
a + b < a + s < 0.

Since α is a cut there exists c ∈ Q with c /∈ α. By Exercise 1.2.3 c > a. Choose
n ∈ N so that n > c−a

−t . It follows that a− nt > c. Consider the finite (increasing)
list of rationals:

a, a− t
2 , a− 2t

2 , a− 3t
2 , a− 4t

2 , . . . , a− 2nt
2 = a− nt.

Since a − nt > c and c /∈ α, by Exercise 1.2.4 it follows that a − nt /∈ α. So in
the finite list above, there is a largest element a − kt

2 ∈ α. This means that both

a− (k+1)t
2 and a− (k+2)t

2 are not in α.

Let r = a− kt
2 , q = −a + (k+2)t

2 , and s = −a + (k+1)t
2 , all of which are rational

since a, k, t ∈ Q. Since t < 0 and q = s + t
2 , it follows that s > q. Notice that for all

p ∈ α, since a− (k+1)t
2 /∈ α by Exercise 1.2.3 it follows that p < a− (k+1)t

2 . Thus for
all p ∈ α,

s + p <

(
−a +

(k + 1)t
2

)
+

(
a− (k + 1)t

2

)
= 0.

Since s > q, by definition q ∈ β.
Finally,

r + q =
(

a− kt
2

)
+
(
−a + (k+2)t

2

)
= 2t

2 = t,

where r ∈ α and q ∈ β. So t ∈ α + b.

THEOREM 1.2.25. Additive inverses are unique. That is, if α, β, λ ∈ R and α + β = 0̂ = α + λ,
then β = λ.

EXERCISE 1.2.26. Prove this result. Hint: Consider the expression β + α + λ.

EXERCISE 1.2.27. Let α ∈ R (cut). If a ∈ α and b ∈ (−α), then a < −b.
This is the same as saying: If a ∈ α and a ≥ −b, then −b /∈ (−α).
This is the same as saying: If b ∈ (−α) and a ≥ −b, then a /∈ α.
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